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ABSTRACT b
Q??Q

Analytical studies were conducted to provide means for improving
the design of inducers for high-speed, high-flow rocket engine pumps.
Exact and approximate methods are presented for obtaining three-
dimensional solutions to turbomachine flows with losses and vapori-
zation, and results are presented for two sample inducers. The exact
method solves four non-linear differential equations of motion simul-
taneously by finite-difference and relaxation techniques that employ

a "total residual' concept. Conclusions on inducer performance and
design are made on the basis of several approximate solutions of both
incompressible and two-phase flows, together with analysis of fluid
thermal and scale effects. Fortran IV listings of the analysis com-

puter programs are presented,
g Mm\
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THREE-DIMENSIONAL ANALYSIS OF INDUCER FLUID FLOW

By Paul Cooper and Heinrich B. Bosch
TRW Accessories Division

SUMMARY

This report presents the results of three-dimensional analytical studies of inducer
fluid flow performance. A system of equations and boundary conditions is presented
for any general continuum flow. Specifically, two-phase flow and losses are contem-
plated, and we employed a thermodynamic equilibrium model to describe these. The
bubbles in two-phase flow are assumed to be infinitesimal in size and infinitely many
in number, thus allowing continuum treatment.

An exact method was employed for solving the resulting four simultaneous nonlinear
differential equations, boundary conditions and other relations by finite difference
methods. A relaxation process makes those corrections to an initial field such that
the "total residual" of the field is reduced sufficiently. Several solutions were ob-
tained; first, of simple problems having known answers, and finally for two sample,
variable-lead helical inducers (6. 2° and 12° inlet tip blade angles respectively) on
coarse grids., The validity of the method for both two-phase and liquid flows was
established empirically. Studies of these results indicate that more accurate solutions
can be obtained with finer grids.

An approximate method of solution was also developed to obtain rapid solutions for
analyzing the resulting inducer performance and fluid and scale effects. Curves of
average pressure-rise versus net positive suction head (NPSH) for the two sample
inducers were obtained for different values of the thermodynamic vaporization para-
meter implied by the model., These results appear to have some correlation with
existing theory on fluid effects or scaling, and they lead to conclusions on the character
of the flow at various values of NPSH. Studies of these theories and data have indicated
the areas of design optimization that can be undertaken with the analysis methods pre-
sented. Empirical modifications to the equilibrium model of the programs would give

a more accurate description of the two-phase flow and losses. They would also account
for thermodynamic non-equilibrium effects to the extent that they are not distinguishable
in the test data employed for such modifications. Fortran IV listings for both analysis
methods are included.






INTRODUCTION

Because of their ability to pump fluids under cavitating conditions, inducers are em-
ployed for pressurizing the inlets of high speed, high pressure rocket engine pumps.
To predict inducer performance and inlet pressurization requirements for various
fluids and speeds and to improve design methods, a precise knowledge of the internal
flow is required. Incompressible, lossless, approximate analysis methods derived
from the work of Stanitz (reference 1) and Hamrick et al (reference 2) are available,
(references 3, 4, 5). However the typically two-phase flows with loss that occur in
inducers lead to loading distributions and overall performance that cannot be described
by an entirely single-phase isentropic flow analysis. Thus the design approaches for
inducers generally ignore the blade-to-blade flow field effects and utilize blade element
methods with empirically distributed losses (reference 6); the overall sizes, speeds and
average velocities being determined as one-dimensional consequences of basic suction
parameter requirements (reference 7).

The present program was instituted to obtain three-dimensional methods of analyzing
the inducer flow field and to apply the results to the improvement of design criteria,
performance prediction and scaling laws in continuation of similar work performed
under a previous contract (reference 8).

Our main effort was directed to obtaining an exact three-dimensional method of
solution that would allow the inclusion and easy modification of two-phase and loss
effects. Of several approaches that we investigated, the successful one was the
simplest, obtaining solutions directly in terms of the pressure and three velocity
components. At first we attempted what appeared to be a simpler dual-stream-
function analysis of the relative flow field (using techniques similar to those of re-
ferences 9, 10, 11), but complexities in the iteration and the boundary conditions arose
(see Appendix B). Starting with the vector momentum and continuity equations of
Section I and allowing for whatever state, energy and loss relations would be necessary
to describe the real fluid effects, we reduced the basic problem to one of solving four
scalar non-linear partial differential equations (Section II. A. 1) throughout the relative
flow field, which includes the region within an inducer channel as well as the extensions
of this region upstream and downstream. We solve the four scalar equations together
with an equation of state by applying each of them in finite-difference form to all points
of a general, non-orthogonal grid which we construct in the relative flow field.
(Appendix A develops the transformations required to convert finite differences in this
grid to derivatives in the usual right-circular-cylindrical coordinate system used for
the equations.) The solution emerges by the application of corrections to assumed
values of the unknowns at each point in cyclic fashion. These corrections are those which
reduce the "total residual", i.e., the sum of the squares of the residuals of each of the
four finite difference equations at all points in the field.

Before obtaining inducer solutions by this method, we checked it on two simpler problems
for lossless axial flow through a paddle wheel channel. The first problem was wheel
type flow, for which we obtained satisfactory solutions to both incompressible and two-



phase flow, using a barotropic vaporization relation for the latter. In the second
problem we verified our solution to incompressible, irrotational flow with the results
in Stanitz's three-dimensional potential-flow solution (reference 12). Both of these
simple problems revealed effects of grid point density and the total number of unknowns
on the resultant accuracy and calculation times. Finally we obtained incompressible,
lossless solutions to the flows in two sample, variable-lead, radial-element-bladed
inducers having inlet tip blade angles of 6, 2° and 12° respectively. While accuracy

was reasonable for the number of grid points used, our present understanding of the
problem indicates that finer grid meshes will improve this accuracy.

Turther iteration would normally be required to obtain completed solutions by altering
the positions of the initially assumed upstream and downstream extensions of the
blades until they are unloaded, Another solution of this type for the 12° inducer with
two-phase, lossless flow demonstrated that no additional complications or calculation
times are required for the inclusion of these real fluid effects.

In addition to the exact method of three-dimensional solution, we introduced (Section III)

a more rapid, approximate method to assist in the investigations of design, performance,
and scaling parameters, This method assumes the flow to be restricted to annuli bounded
by stream surfaces of revolution whose upstream locations (in our case, at the blade
leading edge) are fixed. Two-phase effects in an approximate blade-to-blade solution

are taken into account using the barotropic state relation. The solution is obtained by
adjusting the positions of the stream surfaces to achieve simple meridional equilibrium
along quasi-normals at several stations from inlet to outlet. We obtained solutions by
this method to the 6, 2° and 12° sample inducers, and correlations with the results of the
exact method are presented. We obtained further solutions with loss and two-phase

flow, demonstrating the shifts of loading and velocity distributions that occur due to

these effects, together with the deterioration in overall performance that occurs when

the net positive suction head is reduced (Section IV). These theoretical runs also show
the changes in performance that occur with corresponding variations of the scaling or
fluid vaporization parameters, giving substance to certain theories of thermodynamic
effects on performance first advanced by Stepanoff (references 13 and 14).

We have included Fortran IV digital computer programs (Appendixes C and D) for both
methods of analysis, which are applicable to any shapes of inducer hub, shroud and
blades. The approximate method is best suited to rapid analysis of performance, or
for determining whether the geometry in question should be analyzed by the longer,
exact program, Thus the results of this work are methods for obtaining reasonable ap-
proximations of actual inducer flows, giving overall pressure rise and efficiency and
radial distributions of average pressure and velocity at exit, as well as complete dis-
tributions of fluid density, pressure and velocity throughout the flow channel.



*
LIST OF SYMBOLS 1

A cross sectional area or passage area normal to associated velocity
component

a,b,c direction cosines of wall boundary, (equation IL 9)

a,b,c variable-lead constants of blade pressure surface, (equation D.1 See

figures 11.12 and II. 18).

B fluid thermodynamic constant, (= p ¢ T*)

B* blade force coefficient, (equation III. 6)

b blade height

D diameter

D number of independent discrete variables, (equation IIL 14)

D diffusion factor, (Section IV. A. 2 only)

Dh hydraulic diameter (= 24 )

E number of governing finite difference equations, (equation II 13)
friction force per unit mass, (equation L 2)
friction loss factor, (equation I.14)

8o constant relating mass and force in Newton's second law

H total head (= g— + 2377:;

Hi total energy per unit mass or ideal total head, (equation IV. 24)

HL, d diffusion head loss, (equation IV.9)

AH mass-averaged total head rise of inducer, (equations II 30 and III 25)

h enthalpy

i average angle of incidence between the blade and relative streamline
direction at inlet (= Bb, 1 ﬁﬂow, 1)

J mechanical equivalent of heat

k cavitation number, (equation III 38)

L loss of available energy per unit mass, (equation I.9)

M integer in relaxation process, (see Section IL A. 3)

m distance along streamline or meridional plane, (figure IIL 1)

* This list does not apply to Fortran symbols, which are defined in Appendixes B and C.

1 See Note on Units of Numerical Quantities at end of this list.

4



inducer rotative speed in revolutions per unit time (= s )
2T

distance in direction normal to streamline or surface
distance from hub in quasi-normal direction (figure III. 1)

number of blades -

. A Pj -DPsat

net positive suction head ( = — )
f

total pressure; viz., the pressure resulting from isentropic
stagnation pV2

(only in incompresssible flow does P = p + Z_go
shaft power delivered to fluid, (equations II. 31 and III. 29)
power coefficient (5 g, Ps/ Pe 93 T 15)

static pressure (called "pressure')

perimeter of flow channel

vapor pressure

dimensionless local depression of pressure below vapor pressure,
(equation IV, 8)

total volume flow rate

volume flow rate per channel

residual, (equation II 5)

machine Reynolds number, (equation III. 31)

total residual, (equation II. 15)

star residual, (equation II. 16)

radial coordinate: radius from axis of rotation

radius of curvature of streamline in meridional plane
root-mean-square residual, (equation II 18)

suction specific speed, (equation III, 37), IV.15 and IV.16). Note that these
equations define a unitless or truly dimensionless S. To convert to the
usual, large numerical values of S based on gpm, rpm and ft-1bf
multiply the unitless S by 17,180 Ibm

entropy

temperaturé

thermodynamic vaporization constant ( = p—E;— )
time

blade thickness (equation A, 2)



q torque

TSH difference in values of NPSHyin, (see figure IV. 6 and equations IV. 19
and IV, 20). Called "thermodynamic suppression head".

U blade velocity ( = Qr)
streamline unbalance, (equation III. 10)
u radial component of relative velocity ( =Vy)
A% absolute velocity of fluid
v circumferential component of relative velocity ( = V9 - Qr)
\Y% " \ .
<_I:—>p performance T (equations IV, 19 and IV. 20)
w velocity of fluid relative to inducer
w axial component of relative velocity (= Vz)
w mass flow rate (equation III. 4)
Wi total mass flow rate, (equations IL 27 and III. 24)
X two-phase fluid quality (equation IV. 6)
£ axial coordinate: distance from selected point on blade leading edge
24 successive variation ratio (see Section II. A, 3)
a, B, general coordinate surfaces, (see Appendix A)
B angle between circumferential direction and blade or relative flow
direction
r circulation, (equation II. 36)
Y angle between axial and meridional streamline directions,
(figure IIIL. 1)
v angle between quasi-normal and radial direction, (figure III. 1)
A, prefixes meaning ""change of'' or "increment of"
) angle of deviation of relative flow (W) from blade (= Bb - 'Sflow)
§* boundary layer displacement thickness

€ convergence constant (equation II. 19 and IIL ‘11)
¢ diffusion loss factor, (equation I 15)

s“c, §'  diffusion coefficients, (equation IV, 10)

7 efficiency, (equation III 23)

n overall efficiency, (equations II 32 and III. 30)
e vaporization parameter, (equation III 36)

0 circumferential coordinate



r > >

=

distance in direction of relative streamline
stream function constant, (Appendix B only)
three-dimensional stream function (Appendix B only)

kinematic viscosity

¢ hub-to-tip radius ratio

p density

p blade-to-blade average density, (equation III. 19)

I 4 blade solidity ( = blade tip arc length/exit tip circumference)
o three-dimensional stream function ( Appendix B only)

T circumferential direction vector, (figure II.1)

0] flow coefficient, (equation III. 34)

¢ velocity potential

R § inducer total head rise coefficient, (equation III. 33)
\I’p inducer static pressure head rise coefficient, (equation II. 21)
Y dimensionless NPSH, (equation IV.11)
\I’sp cavitation coefficient, (equation III, 35. Based on static pressure,

as with k).
Q inducer angular velocity in radians per unit time
7] loss coefficient, (equation III. 22)
SUBSCRIPTS

b blade

ex blade trailing edge (exit)

f liquid (applies to properties p and s only)

f if all mass flowing existed as liquid ‘

fg change from liquid to vapor at constant temperature and pressure

g vapor

hub

streamline index used in approximate analysis, where i =1 at hub
and i = q; at shroud (see figure III 1)



i,j,k grid point indexes used in exact analysis

i' annulus index used in approximate analysis; where i' = 1 in annulus
adjacent to hub, and i' = q; -1 in annulus adjacent to shroud. Fluid
quantities so modified are assumed to exist midway between the two
adjacent streamlines, (see figure III 1)

j station index used in approximate analysis (see figure III.1) j =1 at
inlet; j = a; at outlet

j' station halfway between j and j - 1 used in approximate analysis,
(see figure IIL 4).

M mean

m meridional component

NC value at non-cavitating conditions, (entirely liquid flow field)
p pressure side of blade or channel

djr G (see definitions of subscripts i and j respectively)

r radial component

S suction side of blade or channel

sat at saturated liquid conditions

T total

t blade tip (at shroud. Also at inlet unless otherwise speéified)
% axial component

0 circumferential component

0 far upstream

1 blade leading edge (inlet) except in Appendix B*

2 blade trailing edge (exit) except in Appendix B*
SUPERSCRIPTS

——

vector quantity

o unit vector
— average
A dimensionless

*NOTE: the words "inlet" and "exit" (or "outlet") apply to blade leading and trailing
edges respectively—not to the mathematical upstream and downstream
throughflow boundaries which can be at different locations.
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Note on Units of Numerical Quantities

Unless otherwise specified, values of all dimensional quantities are presented in
units of the primary dimensions which are characteristic for inducers:

Primary dimension

Length

Time

Mass

Force

Thus the data is effectively dimensionless,

as some multiple of a characteristic value.

are as follows:

Quantity

Density
Velocity
Pressure

Mass flow rate

Characteristic value or unit

I‘t, 1

1
Q

3
Pr Tt 1

fog2 | 4
go tyl

each numerical quantity being expressed
Typical results for specific quantities

Characteristic Value

3

pf Qrt,1

In this system, s, 2, and 8o will have numerical values of 1, since they are
each equal to their respective characteristic values.

Values of coefficients and dimensionless parameters are unitless by definition.



SECTION I
FLUID FLOW RELATIONS
The physical assumptions, basic equations and boundary conditions required fox ob-
‘taining three-dimensional solutions of the flow field for an inducer or other turbo-

machine (see figure I.1) are presented in this section. Methods of representing
fluid state and losses and of determining required boundary conditions are discussed.

A, The Flow Model

In order to have a complete and tractable turbomachine performance analysis, the
continuum flow concept is desirable so that the flow field does not need to be broken
into parts requiring different mathematical procedures for single- and two-phase
regions. Therefore, depending on the local state requirements, the fluid is either a
liquid or a variable-densify homogeneous, two-phase medium (with infinitely many
small bubbles dispersed in a fog-like manner). The flow is assumed to be adiabatic,
steady and cyclic, (i.e., similar in all channels of the machine or uniformly periodic).

1. Equations of Motion

In an absolute frame of reference, the general vector equations of con-
tinuity and momentum for such a flow are respectively as follows:

vV - (pV)=0 : (L 1)
g0 -h - a
—vp+ V-v)V+F=0 (I 2)

where all symbols are defined in a table preceding this section. The
friction force vector F appears in reference 15, page 45, and is not a
body force term. It is a general, and convenient way of including any
suitable loss mechanism. The classical transformation of these two
equations into one equation in terms of velocity potential (reference 12)

is not possible if we wish to retain the generality required for the typical
solutions with two-phase flow and various forms of loss description. Thus
a simultaneous solution of the equations of motion is necessary, and this
is accomplished conveniently if we describe motion in the field relative

to the rotating blade channel (figure I.1). The resulting relative velocities
are easily converted to absolute velocities.

The continuity and momentum equations (I.1, I.2) are expressed as
follows in terms of the relative velocity vector W =V - TxT:

Continuity v . (PW)=0 (I 3)

10
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8 2. = -~ o e
Momentum - vp - @°F+ W -v) W+ 28 xW+F=0 (1.4)

where Q is the angular velocity of the channel. -The density ¢ is given by
any convenient equation of state at all points, generally as follows:

State p=p (p, h, W, yp) (1.5)

where the enthalpy h is found from the adiabatic energy equation along
streamlines:

2 2 2
Energy dh=-d [ 2T ) _g w
2g0d 2g0 d

(1.6)

Thus, with an expression for F, we have a complete system of equations;
viz., (L. 3) through (1. 6). (Note that equations I.1 and I. 2 remain inter-

changeable with 1.3 and 1. 4 respectively). Observe that no requirements
of thermodynamic equilibrium are imposed by this system.

. Relations for Two-Phase Flow and Loss Effects

The forms of the state and F relations can be changed to suit the particular
real fluid effects of the problem. Specific expressions for them appear and
are clearly noted in the Fortran IV listings of Appendixes C and D, but they
may be changed easily and without effect on the rest of the program, These
expressions, which we employed to account for two-phase effects and losses,
are based on the following assumptions (as in reference 8):

a) Thermodynamic equilibrium exists; i.e., the W and Vvp terms are
absent from the state equation (I. 5).

b) The fluid is liquid for pressure p above the saturation pressure Psat-
It is a homogeneous, two-phase, compressible continuum for p<p ;
i. e., bubbles are considered infinitesimal in size and infinitely sat
many in number,

¢) The fluid is barotropic; i.e., »=p (p). Also, the liquid density is
constant, This eliminatesalso the h term from the state equation (1. 5),
and makes psat a constant,

d) Losses are caused by friction and diffusion and are point functions of
velocity and position.

Assumption (a) ignores recent research on venturi flow (reference 16) but is
considered to be a reasonable approximation for the turbulent, more disturbed

flows in an inducer. Existing performance correlations of fluid thermal effects

12



where

are based on thermodynamic equilibrium or a uniform departure from it
in all cases. The continuum requirement of assumption (b) is an essential
characteristic of the problem as already formulated.

The constant liquid density in assumption (c) is acceptable for the relatively
low pressure ranges encountered in inducers. However, for two-phase flow,
any losses result in a pressure defect (as compared to the no-loss case) and
an entropy increase, (see equations I.4 and I. 12), both of which would generally
affect the density. Barotropicity exists if density is a function of the pressure
only --- a first order assumption for the adiabatic vaporization-condensation
process being considered. For example, with typical values of pressure rise,
liquid hydrogen (reference 19) has much greater changes of pgat due to losses
than most other fluids; yet in an 80% efficient inducer, the valueof pgyt in-
creases by less than 1% of the static pressure rise of the machine--- much of
this increase occurring at higher (liquid) pressures.

Our barotropic state expression was developed in reference (8) and is as
follows:

Pt

y p 2 psat
( » P<Pgat
1+ T* (Pgat -P)
Pg
— -1
T*= f_s._f pg = E
dp s Ps

We assume that T*is essentially unchanged for a small value of quality,
which yields a large volume of vapor. This approach is justified by an
examination of charts of thermodynamic properties. Observe that the as-
sumption (c) of barotropicity eliminates the need for the energy equation
1.6). However, equation (I. 6) would be required if two-phase barotropicity
is unacceptable; and a new state expression in terms of p and h would
have to be included. These relations can easily be added to the FORTRAN
listings at the same places occupied by equation (I.7). Also required with
the energy equation would be the methods for following streamlines should
a non-uniform distribution of absolute stagnation enthalpy and whirl be im-
posed at inlet,

With the exception of blade tip leakage allowances, assumption (d) is probably

true, especially because of the rather long flow passages and the turbulent
motion and the sudden diffusions due to bubble collapse. In effect, it assumes

13



that the momentum losses due to friction and diffusion are immediately
distributed from blade-to- blade across the flow passage, (reference 8).
Secondary flow effects on these losses are included, as discussed in
Section IV. A. 2, Using assumption (a), we can say that the work Fd\ done
against friction as a particle moves through a distance d\ along a stream-
line is a loss, dL, of available energy, (for adiabatic flow; i.e., no heat
transfer across streamlines), (reference 20):

dL =F -dr =g, J Tds (I. 9)

This connects the losses with the momentum equation and the vector -f,
which may now be expressed as

= dL W
“HFVT (I.lO)

since the friction force vector is always parallel to the streamline
direction A . The magnitude %% is found from equation (I. 13).

Also for thermodynamic equilibrium it is interesting to note that

dh=_ 4 74s 1. 11)
pJ
which, when substituted with equation (I. 9) into the energy equation (I. 6),
gives the familiar streamline component equation of the vector momentum
equation (I. 4):
g dp o2 r? w2

— =d |5 -d (——] -dL (1. 12)

Our form for the loss dL utilizes a combination of friction and diffusion
relations dependent upon the velocity and the local hydraulic diameter of
the channel:

2 2
L dA W w
dL—fD—h - - $d - (I. 13)

- o . o

FRICTION  DIFFUSION

wher e the diffusion term applies only when aw <0, and D, = 4A/p. Specific
values of the friction and diffusion factors are presently those determined

by the smooth-pipe (reference 21) and sudden-enlargement relations

(Section IV), respectively:

0.6104 . -
(WDh>O.35 (I 14)

14

f=0.00714 +

14



W+ AW

1_
W
- 1
J W + AW (I.15)
1+ =
W

where AW is the discontinuous diffusion occurring from incidence and
bubble collapse, which are assumed to result in Borda-Carnot (sudden
expansion type) losses, (see Figure IV.2). That these relations give a

fair indication of the losses is demonstrated in Section III. Further
discussion about the merits of the factors f and ¢ as here defined appears

in Section IV. Note that the idea of losses as a function of position together
with the pressure could be used to describe the leakage losses at the blade
tip locations. Because of this method of describing losses, the only aspect
of the boundary layers that we need to include in the analysis is an allowance
for their displacement thicknesses when setting up the boundary conditions.

B. Boundary Conditions

Figure 1.1 shows the boundaries of a typical inducer channel. We class them as
follows:

1) Wall boundaries
a) Hub and shroud (not necessarily cylindrical or conical), and
the pressure and suction sides of the channel (blades); all in-
cluding estimated boundary layer displacement thicknesses.
b) Extensions of the blades and hub and shroud; i.e., the upstream
and downstream stagnation stream surfaces and other boundary
surfaces.

2) Throughflow boundaries: Upstream and downstream.

1. Wall Boundaries

The conditions that must be applied at the wall boundaries are as follows:
First, since no fluid may pass across them,

W. =0 (1. 16)

where n is a vector normal to the surface. This is the only condition
required at boundaries (la). On the stagnation-stream-surface extensions
of the blades (1b), however, we require the additional condition that they
exert no load on the fluid. This condition is satisfied if the pressures are
equal at any given r and z on each of two corresponding surfaces. Thus we
also satisfy the requirement that the flow be uniformly periodic, since these
surfaces are spaced uniformly about the axis; i.e., only their 6 locations

15



differ and these by exactly %— , where ny, is the number of blades in the
machine,

Boundaries (1b) must be coincident only with the stagnation stream
surfaces that extend from the blades. For other locations, the three-
dimensional velocity field would include and can be discontinuous at the
stagnation stream surfaces. It is simpler for the boundaries to be
located at such discontinuities. We understand this readily by calling
to mind the three-dimensional corkscrew motion that superimposes
itself on the relative throughflow field, as illustrated in figure I.2. For
two-dimensional flow in the field 1.1, view (c), there is no discontinuity
in velocity as one passes from one channel to the next, except in the
loss case, for which a discontinuity exists downstream (and upstream in
the recirculating-flow case). So, even in two-dimensional problems,
there are only special cases in which "quasi-boundaries" (reference 22)
can be extended upstream and downstream in any direction (not necessarily
that of the stagnation stream surface)-- on which one could apply simply
the condition of uniform periodic behavior in all variables.

To solve the three-dimensional problem with the required unloaded
stagnation stream surfaces, one must first assume their locations with
care, keep them fixed and proceed with the calculations. Only a few
cycles of computation by the exact method (Section IT) will reveal the cor-
rectness of these locations; and they may then be changed as required to
unload the surfaces (reference 8, page 4-34) and the calculations resumed.

The required extent of these upstream and downstream regions depends on

the type of problem being solved. For example, in two-phase cases at design
flow rates, where nearly complete unloading of the leading edge region occurs,
there is generally very little influence of inducer flow on the upstream field.

In that case, the upstream region with its stagnation stream surfaces could
very probably be reduced in extent; (they were omitted altogehter -- both
upstream and downstream in the approximate solution of Section IIl). Similar
elimination of the downstream region may be possible quite often, since in-
ducer blades are very lightly loaded (due to the high solidity), and the resulting
relative exit deviation angles are small. In the general case, however,
reference to the fields used in other work seems to indicate that an extension
of each of these regions of approximately one channel width away from the
blading would be sufficient for imposing uniform conditions on the throughflow
boundaries (references 23 and 24) without introducing unrealistic results such
as would be produced by external flow singularities.
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Throughflow Boundaries

The mathematical conditions required at the throughflow boundaries are
not so readily deduced from the kind of physical certainty that we had con-
cerning the wall boundaries. Therefore, we conducted studies of other
types of problems to determine the physical conditions that are implied by
the known mathematical procedures of simpler examples. We could then
translate these physical conditions into analytical statements in terms of
the variables in our problem, just as we did for the wall boundaries. For
example in a three-dimensional problem in terms of the velocity potential
¢ such that V2¢= 0, we must specify either ¢ or its normal derivative

d¢ /dn everywhere on all boundaries. Since V =v¢, we interpret this
as requiring a statement about the component of velocity normal to every
point on the boundary. Furthermore, in order for the velocity potential
¢ to exist, a statement about the fluid rotation had to be made; viz,

v x V=0. Also, if the rotation is specified at one point on a streamline,
it will be automatically determined at all other points on that streamline.
This is a consequence of the vorticity relations that are another form of
the governing equation. Finally, if the pressure is known at one point in
such a field, it can be determined everywhere else from the resulting
velocity field; for example, by equation (I.4)

These observations lead us to the following conclusions about minimum
required conditions on the throughflow boundaries in the general, three-
dimensional problem:

a) Specify the relative rotation ¥V x W over a complete cross
section of the flow -- preferably at the upstream throughflow
boundary, since that is where it is most likely to be known,

b) Specify the distribution of relative velocity component W.n
normal to the upstream and downstream throughflow boundaries
so as to satisfy continuity. (Note that this is also being done
at the wall boundaries by equation (1. 16)).

c) Specify the pressure p at one point -- again preferably on the
upstream bhoundary.

The application of conditions (2) and (b) to the exact method of solution
consists of specifying the distributions of the throughflow velocity and

of the derivatives of the other two components on the upstream through-
flow boundary (equation II.10, 11, 12). In the actual finite-difference
procedure (Section II. A, 2) this is accomplished by specifying the distri-
butions of all three components of velocity on the upstream boundary,

and of two of these components at the next throughflow station adjacent

to that boundary, Condition (c) defines the pressure field -- and that of the
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density p when a barotropic relation, e.g. equation (I.7), is used. Ifa
more general form of the state equation (I. 5) is required, the distribution
of por of the enthalpy h (which, with p, defines p) would also be needed

at the upstream boundary.

We found that if any more complete information about the variables is
available at the throughflow boundaries, it can greatly reduce the amount
of calculation required to reach a solution. Such distributions must be
compatible with the required ones; viz., conditions (a), (b), and (c).
Thus we always specify a complete distribution of pressure at the up-
stream boundary, since the one that is compatible with the required
velocity distributions can usually be determined easily.

Conditions (a), (b) and (c) are not necessarily the only set of mini-
mum required boundary conditions upstream and downstream. An
alternate set can be found; for example, it is possible to specify at the
downstream boundary a distribution of velocity direction instead of the
normal velocity component magnitude (condition (b)). We successfully
solved two-dimensional examples of potential flow by both methods, and
in Section II some of our earlier solutions by the exact methods were
obtained by specifying (both components of) the directions at the down-
stream boundary.

Additional evidence that we have an adequate set of throughflow boundary
conditions as discussed in the foregoing paragraphs can be obtained from

the well-known procedures of approximate methods (reference 2). Our
approximate solution (Section IIT) specifies the upstream distributions of

all three velocity components and the compatible pressure distribution in
addition to the necessary single value at a point. The downstream deviation
angle distribution (one component of the direction) is specified. The re-
striction of the flow to annuli between stream surfaces of revolution about

the axis of rotation probably accounts for the other component of downstream
direction as well as the remaining parts of the upstream rotation distribution.

So it appears that conditions (a), (b) and (c) with or without substitution of
downstream directions in (b) together with additional compatible distribution(s)
are the proper throughflow boundary conditions. With the wall conditions
discussed earlier (Section II. B. 1), we have a complete set of boundary
conditions on our three-dimensional problems, Although there is considerable
empirical evidence of their validity, further study would be required to

obtain a rigorous mathematical proof of these conclusions (see, for example,
references 25 and 26).
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SECTION II
THREE-DIMENSIONAL SOLUTION (EXACT METHOD)

A. METHOD OF SOLUTION

In this section, the basic flow equations are expressed in scalar form and their finite-
difference approximations are presented. Next, the numerical treatment of boundary
conditions is examined and an algorithm is developed for a numerical solution of the
system of finite-difference equations, and certain effects of grid size are discussed.

Finally, the form of the results and their relationship fo inducer performance is
discussed.

1. Scalar and Finite-Difference Form of Basic Flow Equations

We construct a cylindrical coordinate system (figure II. 1) which rotates
in the same direction at the same angular speed, ¢, as the flow channel
(figure 1.1). This relative coordinate systern is described by three
mutually perpendxcular unit vectors where T points in the direction of

increasing r, ’C’ points in the direction of rotation, and z points along the
axis of rotation,

The components of the vector equation of momentum (I.4) in the directions
of r, 8 and  are, respectively (reference 9),

8o o, L, vau du

7 o’ _81' T w——az——(v+r§2) +F =0 (O.1)
8o gp v v v ov . uv
J%+ua_r.+TW+WTE+_r_+2uQ+FG 0 (I 2)

8o  9p aw v 0w aw 3
p—-TE—‘FuW“F?—ﬁ‘FWE +Fz—0 - (H‘3)

where u, v, and w are the radial, circumferential and axial components,

respectively, of W, and Fy, Fg and Fgz are the corresponding components
of the vector F.

The equation of continuity, in scalar form is

wo,au, L ov w1 a0, v oo, 0p
r+6r+r 09+az+9(uar+r 36 W az)‘o (. 4)

This system of four partial differential equations, together with the appli-
cable relations for density and the scalar F's (equations I.7 and I.10) and
the attendant boundary conditions (see Section I. B), constitutes the complete
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set of relations required. To obtain a numerical solution, we represent
the flow field by a grid of points of intersection of three families of surfaces.
Each such grid point is identified by three indexes as shown in figure II. 2.

Next, corresponding to each of the equations (IL. 1) through (II. 4), four
residuals are computed at each grid point as follows:

(Rl)i,j,k = {g;_:_ [—3—3] +u[—z—3%] +%[g—g] +W[§_E_:|

(1. 5)
—%(V+r9)2+Fr}
i,j,k
- [Bo [P v, ¥[8V KA
@, 50 s (%) 5] T v ]
+ﬂ+2u9+F] (IL. 6)
T o). .
i, i,k
8o [gp W v [ow ow
IR b b o A S R E A e
o, Lav) L few
(R4)i,j,k B [ r [ar} T T [ae] +[aa] (11. 8)
1 (fep] , ¥ [ep op
" p <u[ r] " T [68]+W [az])}
i,j,k

The values of the first three residuals are measures of the local non-
equilibrium in the radial, circumferential and axial directions, respectively,
and (R4), j k gives a measure of the extent to which local mass conservation
is violated.

The local density o i, j,k, is computed from a state equation (see Section

I. A. 3) and the terms (Fr)i, j, k, (Fo)i,j,k and (Fz)i, j, k from given loss
formulae, if any. These four differential equations will yield residuals

for assumed distributions of the variables, u, v, w and p. It would be
possible to assume a p distribution also — which would then cause the

state equation (I.7) to yield residuals. However, this is not necessary,
since we have an explicit algebraic relation for ¢ in terms of the (assumed)

p values (equation I.7). A similar statement can be made about the F terms.
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All indicated partial derivatives are computed from their usual, second-
order, finite-difference approximations (reference 27, pp. 245-6). For
example, at an internal point for a cylindrical coordinate grid,

[ap] _ Pk TPk

or 1,4,k 2Ar
[iu_ Y5+ Lk T Y i-1,k
90, 9

o) 2A
[ - Vi pkel” i, g, k-1
0z i,k 2A8

where Ar, A8 and Az are the finite increments between grid points in the
radial, circumferential and axial directions, respectively.

At a boundary point, an appropriate one-sided difference expression is
used. For example, if the point (i, j, k) lies on the hub, we use

ar i1,k Ar

[a_p] o Pivnyk Pk
and similarly for other variables and at other boundary points. This is
exactly the formula which would result if a linear extrapolation were made

to a fictitious point outside the boundary and then the above, second-order
formulae used.

These formulae are valid if the boundaries are coordinate surfaces, as in
figures II.5 and I1. 8. For boundaries of arbitrary shape, a special coordinate
transformation is applied to the equations before the finite-difference equations
are determined, This transformation, which does not alter the following
discussion, is described in Appendix A.

An ideal solution to the system of finite-difference equations is a distribution

of values, pi,j, " ui, i K Vi,j,k’ and wi’ i K which satisfies all boundary

conditions and makes the four residuals, (R1)j,j,k through (R4)i,j,k, vanish
at all grid points.

Observe, however, that at an internal point the central value of the pressure,
Pi, j,k, is absent from all four residuals (equations II. 5 through II. 8).
Therefore, these four local residuals alone are ineffective in determining a
proper value for pi,j, k. There are other reasons why more than the four
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point resuduals must be considered at a time. These reasons, due to the
finite-difference treatment of boundary conditions, are discussed next.

. Special Considerations at Boundary Points

At every wall boundary point, the three velocity components must satisfy
the condition of equation (I. 16), which is

-

W.n=0

In terms of the grid points, this becomes

+ + =
%5k A0,k T Vaik Pnik Y9k Gk 00 (IL.9)

where aj, j, k, bi,j,k and Ci,j, k represent the components of the vector n,
normal to the wall boundary at grid point (i, j,k). This immediately im-

poses a dependence of one of the velocity components upon the other two

(see Appendix A), in addition to the relationships already required by the
four governing equations (I 5) through (II. 8).

One important feature of the present problem is the fact that at each grid
point, there is a system of equations to be satisfied. This poses some
difficulties at boundary points. Note that in a problem involving a single
equation and a single variable, it is sufficient to have the boundary value

of the variable determined solely by the imposed boundary condition without
requiring that the governing finite-difference equation be satisfied there
also (reference 27, pp. 260-265). In our problem, however, four values
(p,u,v, and w) have to be determined at a boundary point. The single
condition (II. 9) is obviously insufficient, especially in view of the fact

that this condition is independent of pj, j, k. We therefore require that the
four governing finite-difference equations be satisfied at a boundary point
as well as the imposed boundary condition. This is a redundancy of the
entire system of finite-difference equations in terms of the total number of
discrete values. No mathematical inconsistency is implied here, since

the governing equations must be satisfied everywhere in the field, including
the boundaries. However the numerical procedure that we are using
introduces errors because it employs linear extrapolations at the boundaries.
The correct extrapolations are obscure, and we have found the linear ones
to be most practical in this work. Further discussion (see Section II. A. 5)
will demonstrate that the effect of this numerical inconsistency in the boundary
regions vanishes as the finite spacing between adjacent grid points is
diminished.

Over the entire inlet region, the three components of the vorticity vector,
Vv x W, are specified (see Section I. B). These components are given by
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_1 faw_ 9 .
(VW) =3 [ae 3z (rv)]
v

(VXWg =32 ~ or
1l e _ou
(vxW) Ty [ar (rv) 69]

(1. 10)

(. 11)

II. 12)

It is therefore sufficient to specify the distributions of wi, j, k only on the
first station (k = 1), and ui, j, k and vi, j, k on the first two stations (k = 1, 2)
since, with these specified values, all partial derivatives appearing in the

above three expressions can be computed.

The remaining boundary conditions discussed in Section I. B are imposed
on the finite-difference problem by fixing distributions of pj j, k on the

first station and wj j k on the last one.

Let I, J and K denote the total number of radial, circumferential and axial
grid-stations, respectively. Then the total number, E, of governing
finite-difference equations (corresponding to equations (II. 5) through

(IL 8)) is

E =41JK

(II. 13)

remembering that p and the F terms are specified by explicit formulae in
terms of pressure and velocity. Since there are then three velocity
components and one pressure to be determined at each grid point, the

total number of discrete variables* is also 4IJK. However, the values of
some of these discrete variables are fixed (as by throughflow boundary
conditions) and some are determined by the values of other variables (as by

wall boundary conditions, equation (II. 9)).
independent discrete variables can be computed to be

2 velocity components
determined by

equation SII. 9)

Hub &
Shroud Blades
D =4IJK - (2JK + 21K
=4IJK - [ZK I+ J +7IJ]

+

Thus the total number, D, of

Specified:

Upstream: u,v,w,p
Station adjacent to
upstream: u, v,
Downstream: w

71J)

(1. 4)

Thus, as a consequence of the boundary conditions, the number of governing
finite-difference equations is clearly greater than the number of independent

*By "discrete variable', we mean the value of a variable at a specific grid point; e. g.,
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discrete variables, (E > D). Such is the nature of the general
boundary value problem, which suggests a "'least-sum-of-squared-
residuals' approach, (reference 28, pp. 209-210).

. Computational Algorithm Using Star Residuals

The above observations lead us to define a '"total residual”
(II. 15)
1 J K
2 2 2 2
= 1 + + + >
Ry 2 ; 2 [(R e "Bt B (R4)i,j,k] °

Since the vanishing of all residuals at all grid points is completely
equivalent to the condition R1 = 0, the purpose of the computational
algorithm will be to obtain discrete distributions of the three velocity
components and the pressures which will tend to minimize the value of
RT.

A change in the value of a variable at point (i,j, k) can affect the residuals
computed at no more than the seven points of a "star" centered at point
(i,j,k), as shown in figure II. 2. This portion of R which is affected by a
change at point (i, j, k) will be called the "star residual at point (i, j, k)"
and is defined by

2 2
Kt (R3)i’j’k + (R4), . k] (1. 16)

1,7,

*
2 2
* = +
ik iz;’k [‘Rl’i,j,k 25,
*

where the symbol denotes summation over the seven points of the

i, i,k _
star centered at point (i, j, k). (If this central point is a boundary point,
this star may have only 6, 5 or 4 points.) Thus, the method will consist
of determining values of the independent discrete variables at each point
(i, j, k) which will tend to minimize the value of R*i,j, k-

Considering general applicability and ease of programming, the compu-
tational algorithm which was constructed consists of trying a predetermined
sequence of corrections to each independent discrete variable at each grid
point and accepting only those variations which reduce the value of the local
star residual (and thus reduce the value of the total residual). This procedure
is applied, repeatedly cycling through the entire three-dimensional grid of
points until an accuracy criterion (discussed in Section II. A. 4) is satisfied.
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Specifically, four initial variations are selected: du, dv, 6w, ép. Also,
an integer, M, and a number, 0<a<|, are fixed. At each grid point, the
value of R*j j,kis first computed, using the current values of u, v,w, and
p at the surrounding grid points. To determine an "improved' value of

uj j, ko for example, R*j, j, k is recomputed, successively using

2 n
ui,j,k"h du, Ui j,k + a du, Ui i, k + a ou, ..., ui,j’kt a ou

until either a reduced value of R*j i,k is obgained or until n = M, where
0<n<M. If one of the variations u; j g *a du yields a lower value for
R% 5§,k then that variation is recorded as the new value of uj j k.
Otherwise, no change is made. Exactly the same procedure is applied
to the other variables and only those variations are accepted which effect
further reductions of R*i, i,k The successive treatment of all the grid
points in the field in this manner constitutes one relaxation "cycle."
Therefore, by construction, the algorithm guarantees a monotonic
reduction of Rp. (We found empirically that M = 3, @ = 0.1 and

du=8v =8w= 0p= 0.1 gave good results where the initial distributions
were obtained from one-dimensional calculations, as in Section II. B. 3.)

With each {rial variation, the values of Pj j k, (Fr)i, ik (Fp)i, j, k and
(Fg)i, j, k are recalculated from the appropriate formulae, before the
corresponding R*i C K is recomputed. At a wall boundary point, one of
the three velocity components is selected as dependent upon the other two
(see Appendix A) and its value is computed from equation (II. 9). All
values which are fixed by throughflow boundary conditions are, of course,
not varied.

At the beginning of each succeeding cycle, the magnifudes of du, év, dw
and &p are set equal to the respective maximum values of the variations
which were accepted during the entire previous cycle.

Thus, the magnitudes of the individual trial variations are automatically
decreased as a solution is approached. The values of « and M remain fixed.

It is possible that the theoretical rate of convergence can be improved by a
compound method such as suggested by Marquardt (reference 29) or

Golffeld, Quandt and Trotter (reference 30). We note, however, that both

of these methods ultimately rely on the choice of an "accelerating parameter"
which is successfively varied until the actual numerical value of R (i. e.

the quadratic functional to be minimized) is decreased. Much additional
empirical work is required to adapt such methods successfully to a given
problem, as evidenced by the following example: We selected a problem

for which we had obtained a solution by the above-described method of successive
variations. We modified the computer program so that the star residual
reduction was accomplished by a gradient technique, based on a second order
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Taylor-approximation to R* in terms of x, (where x denotes one of the
discrete variables, u,v,w, or p, to be determined. The resulting iterative
formula was

2

(x+ 8X) = X - [(%%*ﬂ /[( aa 52*)} (IL. 17)

6_2]3: >0
provided px2 . The indicated first and second order derivatives
were computed from values of R* corresponding to three trial values of
the variable x. A comparison of the chronology of the root-mean-square
residual

Br

RMS = 10K

(I 18)

for both methods is shown in Figure II.3. After some time, the gradient
method became less effective whereas the method of successive variations
continued convergence at an almost constant rate. Thus our algorithm
with possible modifications such as in « and M remains as the currently
most practical approach. This is due partly to its programming simplicity
as applied to the specific finite-difference problem treated here and to the
fact that other methods which at first seemed attractive from a computing
time standpoint were less effective.

4, Accuracy Criterion

In order to relate the value of RMS (see equations (II. 15) and (II. 18)) to
actual inducer performance note first that the three '"'momentum residuals"
given by equations (1. 5), (IL 6) and (IL. 7) have the units of a head gradient,
or velocity-squared divided by a length. If the "continuity residual",
equation (II. 8), is multiplied by a characteristic constant velocity, e.g.
Qrg 1(%, then the root-mean-square residual, RMS, can be interpreted

as a typical error in local head gradients. Also the continuity residual
then has a magnitude that is comparable to that of the other residuals,
which gives it the correct perspective for adjustment purposes, (see
equation II. 15). We now require that the value of RMS be small compared
to a characteristic head gradient for the inducer, such as (Qrt)z/ ry

That is, we require that

RMS < € (Q2r¢ 1) ' (1. 19)

where ¢ is some small number, say e= .01,

* Note that this velocity is equal to unity if the problem is being solved
nondimensionally.

29



RMS

0.1

0.06

0.04

0.03

0.02

0.01

0.06

0.04

N i i
S\
h \ Method of
\ [p Successive
O Variations
\\
(@)
\&\ \\\
O\\ D\

Gradient \O\ \ 0

Method ‘\O\

~

O
= T>O_ T
o |
N
\D
~
D\
L)
0 400 ~ 800 1200 1600 2000 2400
Time, Sec.

FIGURE II.3. COMPARISON OF METHOD OF SUCCESSIVE VARIATIONS AND GRADIENT

METHOD. Root-mean-square, residual (RMS) vs. running time on IBM 7070. (The Univac
1107 that we used in subsequent runs takes about 1/50 of the time.)
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If the values of py, j, k» Yj j k» Vi, i,k and wj j k are randomly distributed
about the "correct" values, then about half of the residuals can be expected
to be positive and the other half negative. The cumulative effect of all
residuals from inlet to outlet for this distribution of variables would result
in a head rise error at outlet which is still much less than e(Q Ty, P Am.
Am represents meridional inlet-to-outlet distance along a typical 'streamline.
However, should a biased distribution of values exist, such as an initial
distribution of p = o everywhere, then we can expect the residuals to be
dominantly of one sign, (although they might all still be of approximately
the same magnitude as in the above case) and the cumulative effect would
be an error in head rise of order

e(?r, ) om (IL 20)

From the definition of the static pressure head coefficient for an inducer

g BB/ Pt
p(9r RN (I 21)

we see that, in this case, the error in go AP Pf at the outlet would
be comparable to ( 1 Am ) times the correct head rise of the machine.

S
P T

Hence a more realistic convengence requirement would be RMS <<\I,i %I—n— ) (92 ry)
but since ¢ can be chosen to suit specific cases of 2™ and ¥y, 1

we have retained generality by stating simply that rt 1

RMS <e(Q2 r¢, 1). Itistherefore advantageous to estimate the initial values

of the pressure and velocities by a preliminary, one-dimensional calculation

of the flow, This is demonstrated in the discussion in Section II. B. 3.

Finally, if the grid effects or limitations on computing time make it impossible
to achieve negligibly small values of all the residuals, the acceptability of a -
particular numerical solution must then be determined by more than just the
value of RMS. In the case of the investigations of our (Section II, B), series
of examples we were limited by computer size and cost to coarse grids.

Thus in most of these examples the numerical procedure (see Section II A, 2)
made it impossible for us to reduce RMS to the satisfactorily low value ¢

that would make it the only necessary criterion for an accurate solution.
Furthermore this required us to impose a limit on the time or number of
computation cycles, which usually was reached before ¢ could be achieved.
Therefore, in our presentation of examples in Section II. B we compare the
actual distributions of p,u, v and w with known solutions, whenever possible;
and we examine the circulation and other representative quantities in

addition to the behavior of the residuals.
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5. Effects of Grid Point Density

There is an effect which the density of grid points has on the minimum
attainable total residual (equivalently, the root-mean-square residual,
RMS, as defined by equation (II. 18)) for a given finite- difference problem
when the method of star residuals is applied. This is due to the linear
extrapolation of the discrete variables which is made at boundary points. -
If it is required that the discrete variables satisfy all governing finite-
difference equations at boundary points in addition to the appropriate
boundary conditions, as discussed in Section II. A. 2, the correct
extrapolation formulae would be required at boundaries in order for

the system of equations to yield zero residual. For example, incorrect
extrapolations which satisfy one differential equation normal to a boundary
will produce boundary values of the variables that will not completely
satisfy the other equations—particularly those that govern motion parallel
to the boundary. Since a linear extrapolation is used, a linear behavior
is forced on the variables in a region extending one grid space from the
boundaries to the interior of the field. For a relatively coarse grid, this
discrepancy will be dominant and, consequently, the total residual, RT,
can only be minimized to some non-zero value. As the grid is refined,
however, the linear approximation to the variables extends over a much
smaller region and the effect of the discrepancy diminishes. Thus the
minimum attainablé total residual can be expected to approach zero as the
mesh size (distance between adjacent grid points) approaches zero.

To illustrate this effect, we consider the problem of solving, by use of
star residuals, the equations of incompressible flow which is irrotational
in the absolute frame of reference:

o

vy - W=0 (11. 22)
Vx W+2ll =0 ' (1. 23)
We will discuss a two-dimensional solution of these equations over a

region which is a cross section perpendicular to the axis of a paddle-
wheel channel (see figure II.8). The scalar equations are

u ou 1 év '

—t —t = — =

r °or r o9 0. : : (IL. 24)
v ov 1 Ju

— —— — — —_— = . 5
r+6r = +2Q 0 (II2)

where u = o on the hub (r = ry)) and shroud (r = ry) and v = 0 on the
blade surfaces.* We obtained solutions to this problem, by the method
of star residuals, on grids of 5x 5, 9x7, 9 x9 and 15 x 15 points,

*This special, two-dimensional problem will be referred to again in Section II. B. 2.
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requiring the discrete values of u and v to satisfy the finite-difference
equations resulting from equations (II. 24) and (II. 25) in addition to the
boundary conditions on the hub, shroud and blade surfaces. Each problem
was run to ""convergence', i.e. until the root-mean-square residual
(RMS) could not be reduced much further. This yielded essentially the
minimum obtainable RMS. The results (see figure II. 4) indicate that the
minimum attainable total residual approaches zero with diminishing mesh
size. Therefore, any numerical discrepancy (due to requiring that the
discrete variables satisfy all governing finite-difference equations in
addition to the boundary conditions) vanishes as the density of grid points
is increased.

Another numerical phenomenon, the "take-up effect', is a second order
grid effect that is noticeable especially when coarse grids are employed.

It is the property that yields lower minimum RMS residual results for

a given grid cross-section as the number of independent discrete variables
D (see definition near the end of Section II. A. 2) is increased. The pre-
ceding two dimensional problem is an example. Its minimum RMS residual
is given in Figure I1. 4. Extending it axially into the third dimension in-
creases D, adding residuals of the axial component equations which will be
adjusted to non-zero values. (As shown in reference 12, the same two-
dimensional solution is expected on all subsequent r - 8 planes.) This
changes slightly the adjacent downstream two-dimensional distributions,
making it possible to reduce their residuals further than was possible in
the purely two-dimensional problem.

Also, changes to the system of equations or boundary conditions is a way

to change D in a given field. In any case, the residuals thereby added

have the ability to '"take-up" some of the error caused by boundary effects,
which process yields a lower minimum RMS, for the given grid cross-
section, Figure II. 9 gives the results for this same problem (using for
initial values the answers that produced the 9 x 7 point in Figure II. 4) as

D was increased over that of the purely two-dimensional 9 x 7 field.

(See Section II. B. 2 for more detail on the problem.) Figure II. 11 shows

that this "take-up effect" is subordinate to the grid-point density one,
because the effect (on minimum RMS) of increasing D is limited — as

might be expected if the two-dimensional 9 x 7 grid cross-section example
we have been using were to be extended infinitely in the axial direction.
Finally, in the normal case of a fixed three-dimensional field with a fixed
system of equations and boundary conditions, D cannot be varied, and there
is no take-up effect — only the (primary) grid point density effect. However,
as will be demonstrated in Section II. B, we did vary D in some of our
investigations; and these distinctions of grid phenomena must be remembered
as one examines the results,
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FIGURE 1II. 4 EFFECT OF GRID POINT DENSITY. Minimum attainable root-
mean-square residual (RMS) as a function of the number of grid points (G)
for two-dimensional solutions of {V. W= 0, Vx W+2Q-= 0} by star
residuals.
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6. Form of the Results

The results of a computer run consist of three-dimensional distributions

of relative velocity components, pressures, and the accompanying densities,
These distributions directly indicate blade-to-blade pressure loadings and
inlet-to-outlet velocity distributions on the blade surfaces and their
extensions. But to obtain the customary overall performance parameters,
certain averaged quantities must be extracted from these distributions.

For this purpose a data reduction program was written. Details of this
program are presented in Appendix C.

The mass-averaged parameters are calculated from finite-difference
approximations of the following formulae:

Static Pressure Head
rt 6 s P
- rh op (—p) ( p W) rdrde
P\ =
(T> o (II. 26)

where the total mass flow rate across the inlet plane of one channel is
calculated from

w Iy 8g
L _ f° 7 (pw) rdrde e
np Ty Op

Absolute Velocity Head

ry 85
V_2 j;'h J;)p Qéo I:u2+(v+r§z)2+w2] (pw) r drde
D) g0)= = (11.28)
: T
Input Energy 7 _
G}
frrt 55 [m (v + rQ)] ( W) rdrde
—_— h P
(UVe) = (1. 29)

wT

The above three quantities are calculated at the channel inlet and at the
outlet, From these we obtain
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Total Head Rise
- oy 2 2
g = (& - p_) + (.Y..) - <X_) 1. 30
At <p> <p 2go0 280/ 4 (IT. 30).

Shaft Power Delivered to Fluid

Ps W
N = [(UVe)z - (UVe)l] ﬁ{;/go (II. 31)

Overall Efficiency

Aﬁ WT

P
8

=1
1

(I 32)

Further details of the calculations are given in Appendix C,

B. APPLICATION AND RESULTS

The results of applying the method of solution to a sequence of problems are presented
in this section. The problems were solved in order of gradually increasing complexity,
and Table II. 1 shows the purpose and general result of each one, We employed three
types of geometry to determine a) the ability of the program to proceed to a correct
solution, b) the grid effects and attainable accuracy and c) the applicability to inducer
flow analysis.

The specific geometries were
(1) Paddle-wheel channel with wheel-type axial flow (liquid and two-phase).

(2) Paddle-wheel channel with irrotational, incompressible, axially constant
flow (reference 12).

(3) Two typical, variable-lead inducer channels, including upstream and
downstream flow regions (liquid and two-phase).

The geometry of each channel is presented, followed by selected numerical results

and a discussion of some of the phenomena which they illustrate, All problems are
solved nondimensionally, according to the system presented at the end of the List of
Symbols prior to Section I.
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1. Paddle-Wheel Channel With Wheel-Type Flow

The geometry of this six-bladed channel is shown in figure II. 5. The
primary purpose of solving the first two problems on a 3 x 3 x 3 grid
was to have a simple checkout of the computer program. Due fo the
special shape of the channel, the wall boundary conditions (equation
(IL. 9)) are simply

up =1 =0.0
. (II. 33)
Vg = Vp =0.0
Boundary conditions, known correct answers, and obtained results are
shown in tables II. 2 and II. 3. Initial assumptions for both runs were
made to differ from their correct values randomly by about 0. 2,
Run E-1: All Liquid Flow
The correct solution has
u=0,0
v=0.0 }everywhere
. w=10
The only pressure gradient is in the radial direction. Integration of this
radial gradient gives
2
1 Q
P=Pht 5 Pf (rz-rhz) II. 34)
2 go

Setting py, = 0, this gives correct answers of the continuous problem as

ph =0.0
py = 0. 16406
p; =0,46875

where the subscript M denotes the grid point half-way between hub and
tip. Solving the finite-difference analogs of equation (II. 5) simultaneously
at the three grid points, however, gives
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1.0
/ ry g =1.0
I‘h =0,25

t : . Ar =0.375
Axis of Rotation A0 - n/6
Ag =0,375

FIGURE II. 5. PADDLE-WHEEL CHANNEL FOR WHEEL-TYPE, AXIAL
FLOW CALCULATIONS. Runs E-1, 2,
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TABLE II, 2
RUN E-1: PADDLE WHEEL CHANNEL WITH WHEEL-TYPE,
AXIAL, LIQUID FLOW

LOCATION RESIDUAL

(c) p u v w (a)
Typical Randon Hub 0.0 0.0 -0.19 1.18 ——
Initial Mean 0.08 0.19 -0.19 1.19 ———
Assumptions Tip 0.04 0.0 -0.18 1.21 -——

Hub 0.0 0.0 0.0 1.00 0.0
Correct Mean 0.09375 0.0 0.0 1.00 0.0
Answers Tip 0.46875 0.0 0.0 1.00 0.0
Results Hub -0.00781 0.0 0.00156 1,00475 0,00968 (b)
Showing Mean 0.08625 0,00156 -0.00038 1,00394 0,00500
Max. Error Tip 0.46156 0,0 -0.00156 1.00269 0.00399

Imposed Boundary Conditions

Upstream:

Downstream: Directions fixed by requiring that

a This residual is the root-mean-square of the four local residuals
b Accuracy criterion is 92 r, 1 =1.0. See equation (IL. 19)

c Applicable to any grid point on the surface of revolution—hub, mean or tip.
See Figure II. 5.
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RUN E-2: PADDLE-WHEEL CHANNEL WITH WHEEL-TYPE,

TABLE 1II. 3

AXTAL, LIQUID AND TWO-PHASE FLOW

LOCATION RESIDUAL

(c) p p u w (a)
Typical Random Hub 0.0 0.5 0.0 -0.19 1.18 ———
Initial Mean 0.0 0.5 0.19 -0.19 1,19 —_———
Assumptions Tip 0.0 0.5 0.0 -0.18 1.21 —-——

Hub 0. 897 0.905 0.0 0.0 1.00 0.0
Correct Mean 0.983 0.985 0.0 0.0 1.00 0.0
Answers Tip 1.358 1,000 0.0 0.0 1.00 0.0
Results Hub 0.895 .907 0.0 -0,00004 1.00386 0,00216 (b)
Showing . Mean 0,979 .980 -0.00133 -0.00006 1,00298 0.00098
Max, Error Tip 1.354 1,000 0.0 -0.00002 1,00188 0,00090
Imposed Boundary Conditions

Upstream: p= 0.897

u= 0.0

v= 0.0

w= 1.0

Downstream: None
a This residual is the root-mean-square of the four local residuals
2

b Accuracy criterion is Q T, 1.0. See equation (II. 19)
c Applicable to any grid point on the surface of revolution — hub, mean or tip.

See Figure 1. 5.
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P, =0.0
Py = 0. 09375
pt = 0.46875

The discrepancy at point M is due to the linear approximations made at
the hub and tip points.

In Section IL A.5 we explained that incorrect extrapolations would not
satisfy all the differential equations simultaneously. However in this
example we have simply a one-dimensional problem because the answers
yield no variation in the axial and tangential directions with only one
equation (IL. 34). Thus it is possible to attain all zero residuals, although
the results for the discrete problem disagree at one point with the solution
of the continuous problem. (See the discussion of ""discretization error"
in reference 27). Results of this problem are shown in figure II. 6 and
table 1I. 2,

Run E-2: Liquid and Two-Phase Flow

For this problem, we were able to determine values of py, py, and

pt so that, for P¢=1.0, pgat = 1.0 and T*=1,0 (see equations (1. 7)

and (I. 8), it was again possible to have all residuals equal to zero

in the finite-difference solution. Using the same initial assumptions

for velocities as in Run E-1 and zero for pressures, figure II.7 shows
that after 110 relaxation cycles the RMS value continues to approach
zero, as expected for this case. Table II. 3 shows how close the results
are to the known, correct values. We observed that inclusion of the
state equation in the computations did not cause any perceivable increase
in running time per relaxation cycle.

Paddle-Wheel Channel with Irrotational Flow

The geometry for this channel is shown in figure II. 8. The hub-to-tip
radius ratio as well as the blade-to-blade angles were obtained directly
from figure 2 of reference 12. The channel which we consider here is a
portion of the channel used by Ellis and Stanitz (for which complete,
detailed results are presented in reference 12) upstream of where the
effects of radial flow are felt, This is a hypothetical problem since

the paddle-wheel portion of the channel would have to extend infinitely
far upstream in order to yield an irrotational, axially constant flow
pattern,

However, it is another problem whose numerical solution can be determined
by simpler methods. This problem also demonstrates the finite-difference
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FIGURE II.8. PADULE-WHEEL CHANNEL FOR IRROTATIONAL, AXIAL
FLOW CALCULATIONS, Runs E-3,4,5.
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phenomenon of our method which is called the "take-up effect'.

The solution of this special three-dimensional problem is merely an
axial propagation of a two-dimensional flow pattern with relative
rotation of 2 Q. It is, therefore, a propagation in the z -direction of
the solution of the equations

T ar T o6

v v 1 o6u

—— e ——— e —— —— =
r or r 069 290 =0

This problem was presented in Section II. A.5. As starting values for
velocities in the three-dimensional problem, we used the numerical

results of the two-dimensional problem on a 9 x 7 grid and applied them

at all axial stations, along with a constant through-flow velocity of
w =1,0. Initial distributions for pressure were obtained from

Pt 2 2
P =Py * T |:Q (r - 1‘02) - (u '1102) - w2 - Voz)]

which is a consequence of applying the streamline component of the
momentum equation (I. 4) with an assumption of constant "inlet"

pressure infinitely far upstream. The subscript o denotes a reference

point, arbitrarily selected at the intersection of the "pressure blade"
surface with the hub. The corresponding initial RMS value is 0.169.

This RMS value is not zero because of the effect of the relatively coarse

grid, explained in Section II. A. 5, (see the 9 x 7 point in Figure 1L 4).

On the upstream throughflow boundary of this channel, we fixed the
distributions of u and v in accordance with the results of the two-
dimensional irrotational flow problem solved in Section II. A. 5.

The w distribution on that boundary was set at unity and we fixed the

(I1. 24)

(1. 25)

(I1. 35)

value of pg at the reference point of equation (II. 35). On the downstream

throughflow boundary, we imposed flow directions by fixing the values

of the ratios u/w and v/w, usingtheupstreamdata, Although this set of

boundary conditions is valid since they are known results, the impossibility
of determining downstream flow directions for the general inducer problem
is apparent. For a discussion of alternate throughflow boundary conditions,

please see Section I. B. 2.

For this problem, the following three runs were made:
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Run E-3: 9 x 7 x 3 Grid With Exit Flow Directions Fixed

Since this is solved three-dimensionally, we will not require the axial
derivatives to be zero. Therefore, all values on the second and third
axial planes are free to readjust so as to improve the radial and
circumferential residual nonequilibrium at the sacrifice of small axial
gradients in accordance with the '"take-up effect," and the resulting
RMS value after ten relaxation cycles is 0. 090 (see figure II. 9).

The amount of readjustment which occurs due to the take-up effect

is small as can be seen in figure II. 10.

Run E-4: 9 x 7 x 3 Grid With Exit Flow Directions Free

With the same grid of points as for the previous run, we lifted the
downstream requirement that the ratios u/w and v/w have specified
values. (See discussion below,) This introduced more independent
discrete variables D for the same number of governing finite-difference
equations (see Sections II. A.1 and 2). As in the previous run, this
permitted more readjustment of the variables to further reduce the
residual amount of nonequilibrium and the results of 20 cycles for this
Tun are shown in figures IL. 9 and I 10.

Run E-5: 9x 7 x5 Grid With Exit Flow Directions Free

Again using the same grid spacing as in the previous two runs, but
extending the channel by adding two axial stations, we made another
2-cycle run. The additional axial stations enabled further "take-up"
of axial gradients and a further reduction of the minimum RMS value
was attained (figure II. 9).

The lifting of the downstream throughflow direction requirement did

not result in a radically different flow pattern (see figure II. 10) probably
because the initial distributions were very close to the correct values.

A complete set of boundary conditions is still required for the general
problem (see Section IIL. B. 3).

In all three of these runs the coarse grid-point density caused the minimum
RMS residual to be too high to serve as the only criterion for judging the
accuracy of the solutions. In fact (as will be seen) it is quite possible for
the answers to be correct on the average but for the minimum RMS to be
high, as was discussed in Section II. A. 4. TFurther, in the absence of

any ""take-up' by axial gradients— as is the case in our two dimensional
solution of equations (II. 24) and (II. 25) (see Figure II. 4) — the effects

of the relatively large resulting RMS residual appear to be felt mainly

in a fairly uniform way near boundaries, tending to yield better average
answers., The take-up effect, while reducing the minimum obtainable
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FIGURE II.9. TEMONSTRATION OF THE "TAKE-UP EFFECT" WITH INCOMPRESSIBLE,
IRROTATIONAL FLOW. Root-mean-square residual (RMS) vs. number of relaxation
cycles.

48



0.24[!l
0. 20 LK

O
0.16 s

0.12

D> O

0.08

0. 04 ~\
0.00 ‘

Relative Circumferential Velocity, v

-0.04

-0. 08
O Resulis of Run E-3

-0.12 A\ Results of Run E-4 \
O Results of Run E-5

-0.16 . -

-0. 20 _ \

-0..24 :

-0.28 S

-0.32 '
h Radius, r (See Figure II. 8) %
(Hub) (Tip)

FIGURE II.10. VELOCITIES IN INCOMPRESSIBLE, IRROTATIONAL FLOW,
Distributions along channel center line on exit plane.

49



RMS residual, never reduces it far enough to guarantee accurate answers—
and it propagates errors (especially axially). The net result of the take-
up effect — as long as coarse grids are used — is then a decrease in the
accuracy of the average answers. Examination of the relative circulation
around the perimeter of the passage at exit — a useful criterion of average

accuracy — will demonstrate this point.

Figure IL 10 shows that the largest deviations in the velocity field
occur close to the hub, With this we expect to see a corresponding
change in the calculated circulation, T'.
By definition

r-¢ w. dp

where the integral is taken around the boundary of a channel cross
section,

By Stokes' Theorem

I’=‘/I; vV xW . dA

where the integral is taken over the entire area of the cross section,
Since
VxW =-20

for irrotationality (see reference 9, p.1l1l), we have

T= - [26 cdA=- a(rg? - 1p?) (05 - 9p)

Calculating the absolute value of this with the dimensions shown in
Figure II. 8, we obtain the theoretical circulation for this problem as

Firue = 0.49444, Substituting boundary velocities into an approximation
to equation (II. 36) and comparing these calculated values of circulation

at exit to the theoretical value we have the following table of results:
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TABLE II. 4

COMPARISON OF CALCULATED RELATIVE CIRCULATION AT CHANNEL

EXIT WITH THEORETICAL CIRCULATION FOR RUNS E-3, 4, 5

For Results of Icale / Ttrue

Ellis & Stanitz (reference12) . . . . . . . . . . . . . . 0,999

Initial values from equations (I.24, 25). . . . . . . . . . 0,958

RunE-3 - Cyelel10 , ., . . . . « ¢ v v v v o« s o« s . 0,919
Run E_4 - Cy01e 20 S s e ® 8 9 ¢ & s s e 4 s v ® o v s 00 907
Run E—5 - CYCIG 20 . * e e e 2 & » 5 s 2 s s s & 3 0- 891

This illustrates the error propagating capabilities of the take-up effect
where coarse grids are used, The residual amounts of nonequilibrium,
due to finite-difference approximations made at boundary points (see
Sections IL. A. 2 and 5), are reduced in exchange for some circulation
around the boundary, thus distorting the purely two dimensional field
of the cross-sections,

The phenomenon of the "take-up effect" is summarized in figure II. 11
where the minimum attainable RMS values for each run are estimated

from figure II. 9, asexplained in Section II. A. 5.

Three-Bladed, Variable-Lead Inducer Channels

To demonstrate the applicability of the computer program to general
problems, two typical inducer channels were selected, each with
variable-lead, radial-element blades. Figure II. 12 shows the general
geometry for these inducers.

For each channel a "natural" coordinate system is selected so that the
channel boundaries become coordinate surfaces. A development of the
necessary transformation formulae and a discussion of special
conditions and restrictions are given in Appendix A. The first inducer
flow problem is described by

Run E-6: 6,2° Inducer - 5 x 5 x 10 Grid

The lead equation for the blades of this inducer is

r tan B, = % = .10857 + .03444 22

a C
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FIGURE II.11. INFLUENCE OF THE TAKE-UP EFFECT AND GRID POINT DENSITY

ON ATTAINABLE ACCURACY. Three-dimensional incompressible irrotational
flow. Minimum attainable root-mean-square residual (RMS) as a function of

number of independently adjustable discrete variables (D).
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where & = 0 at the blade leading edge. This gives blade tip angles of 6. 2°
and 11, 5°, respectively, at the leading and trailing edges.

The finite-difference grid includes one station at a distance of approximately
one-half of a channel width upstream of the blade leading edge. The angle
of these upstream stagnation surfaces is chosen so that

de Q

dz \4 - (I1. 41)

For a nondimensional rotative speed of € = 1.0 and inlet axial velocity
of wy = 0.08302, this results in an inlet incidence angle of i = 1. 45°.

The initial throughflow velocities, w, are made to vary linearly from

inlet to outlet where the trailing edge distribution is the one which resulted
from an earlier version of Run A-1 (see Section III. B.1). These velocities
turned out to be approximately 7% low at exit due to failure to allow for
blade blockage (see figure III.5). Therefore, this is equivalent to a
physical incompatibility in that "less comes out than goes in". The
method of star residuals, however, still finds a solution with minimum
total residual for the imposed boundary conditions. The remaining runs

in this section demonstrate that this inconsistency in the specified exit
velocity does not affect the basic nature of the resulting velocity
distributions.

The radial velocities, u, are distributed linearly from hub to shroud at
each axial station, so that they are estimated by

u:w_
dz

d
where the slope —; varies linearly from hub to shroud. The relative cir-
cumferential velocities are estimated by

V= Wr —
dz

where % is an average, measured halfway between the blade surfaces at
each axial station. This is done in order to get a fair approximation of

the unknowns at the beginning of the problem. For the same reason, initial
pressures are calculated at each grid point from

=p—f(r2 92+W2—u2-V2—W2) (1. 42)
2g0 1 )
which is a consequence of integrating the momentum equation (I.12) along
streamlines with the above velocity components and p = 0 on the upstream
axial plane.
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The RMS reduction for a 25-cycle run of this problem is shown in figure
II.13. Initial and final hub-to-tip distributions of area-averaged pressures
and absolute velocity components at the blade trailing edge are presented

in figure II.14, The behavior of the mass-averaged performance parameters
shown in Figure II. 15 indicates that these stabilized after about 16
relaxation cycles. The remaining cycles served to effect local alterations

of the internal distributions to further reduce the value of RMS,

Note that the pressures in figure II. 16 indicate some loading at the leading
edge. This loading increases somewhat inside the channel and there is a
tendency to unload at the blade trailing edge. Had we extended the grid
several stations downstream of the trailing edge, this unloading would
have been stronger, as will be shown in the remaining runs.

Another effect which we learned about is a result of the relatively coarse
grid and high degree of obliqueness of the (a ,8 , ¥ ) - coordinate system
used (see Appendix A). The combination of low blade angle and large axial
grid distance As causes the ''streamline distance''AY between the
points to be about four times the circumferential distance AB between
them and about seven times the channel width. Therefore the distances
between points in a "'star' are highly nonuniform and the finite-difference
formulae are not representative of the local partial derivatives (see
equation A, 3). A 'reasonable" grid, therefore, would have required
twice as many points each in the radial and circumferential directions,
and about ten times as many axial stations; i.e. a 10 x 10 x 100 grid.

This would have extended computer running times beyond practical limits.
In spite of these remarks, however, we point to the relatively good
quality of the results which are attainable even with such a coarse grid

as we used.

In all of the preceding runs, the variables at each grid point were adjusted
in the sequence (u, v,w,p). We found by experimenting that considerable
savings in overall running time can be achieved by altering this sequence.
Thus, for the sequence (p,u,v,w) we noticed the running time per cycle
reduced by about 3% and the reduction of RMS values improved by about
14% per cycle, The result is an improvement of about 16% in the overall
RMS-reduction per time., Further improvement in performance of the
computer program was indicated when the sequence (p, w, v, u) was used.
Although we recommend this latter adjustment sequence - and this
sequence is used in all remaining runs of the three-dimensional method -
we believe that the optimum order of adjusting the variables depends
largely on the initial distributions. For each type of problem, therefore,
an adjustment sequence which shows an improved convergence rate may
be determined experimentally although ultimate convergence to the
minimum obtainable total residual (as discussed in Section I, A. 5) is
always assured,
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In view of the above observations, we next analyzed an inducer channel
of the sameoverall dimensions as the above one but with higher blade
angles. The grid we selected has 2, 2 times as many points, and we
extended the flow field upstream and downstream of the blades by an
axial distance equivalent to approximately one channel width. This

is consistent with other numerical calculations of fluid flow fields (see,
for example, references 23 and 24). The geometry used for the remain-
ing computer runs is shown in figure II. 18.

The lead equation for the pressure surfaces of the blades of this inducer is

r tan By, = g—g— — . 21256 + , 09830 22 (II. 43)
a C

where #z = 0 at the blade leading edge. This gives blade tip angles of
12° and 24.5°, respectively, at the leading edge (2 = 0. 0) and the trailing
edge (z = 1.62857).

The finite-difference grid includes three axial stations each upstream
and downstream of the blade system. The angle for the upstream stag-
nation surfaces is again calculated from equation (II. 41). With an inlet
axial velocity of w = 0.17633, this results in an incidence angle of 2° at
the leading edge, which was chosen as a representative value for these
inducer calculations, '

The initial throughflow velocities, w, are chosen so that mass con-
servation is satisfied one-dimensionally from inlet to outlet. As was
done in the case of the 6, 2° inducer, the radial velocities, u, are
distributed linearly from hub to shroud at each axial station so that

up = w((—iz)
da h

where@% h is the slope of the hub, The relative circumferential

velocities are given by

dz

de
where dz  is an average, measured halfway between the blade surfaces
at each axial station.
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Initial values of pressures are again calculated from

p==— (r 8 +w2—u2-v2—w2) (I0. 42)

The downstream stagnation stream surfaces are initially selected so that
no energy is added to the flow downstream of the blade trailing edge. We
simulate this condition by requiring that Vg remain axially constant for
constant r. Since

V= Ve -rQ
-
this is equivalent to requiring that r remain constant. But

de 1 v
r—:——-—-———:—:
w

G - B (IL. 44)

where A is the channel cross section area and q is the constant volume
flow rate. Therefore the stagnation stream surface angles are calculated
from

de v
_— = _9 A
dz (rq (IL. 45)

i, e. the rate of change of angle with axial distance is proportional to
cross section area, Note that finally the only way to obtain no energy
addition by the stagnation stream surfaces is to adjust them and re-
compute until no pressure difference exists across them.

Run E-7: 12° Inducer - 5 x 5 x 22 Grid

The first run with the above described inducer channel was made for

an incompressible, lossless fluid. Figure II. 19 shows that the value

of RMS is still being reduced after fifteen relaxation cycles. As was
the case for Run E-6, however, we see that the values of relative
circulation (figure IL.20) have reached their final levels by the eighth
relaxation cycle. In figure II. 22 we present a chronology of the hub-
to-tip distributions of the pressures and velocity components at the
inducer exit plane. The final pattern for these area-averaged quantities
has emerged by the 15th relaxation cycle. '

The resulting hub-to-tip distribution of absolute circumferential velocity
Vg is not one which would be expected from simple radial equilibrium
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vs., number of relaxation cycles.
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solutions of inducers, For example, those of reference 6 can be shown

to tend toward free vortex flow: Vg high at the hub and low at the tip.

(In subsequent runs we did achieve this., See Figures IL 23 and III. 6.)

The flow pattern of relative circulation counter to the direction of rotation
of the machine, however, was present in the distributions of the relative
velocity components. Part of this may be due to the fact that the circum-
ferential distance between grid points at the trailing edge is approximately
3/5 of the channel width. Another reason may be the fact that the absolute
value of pressure is inconsequential in satisfying the equations of motion
(for an incompressible fluid) and that only the local pressure gradients
need be approximately correct (see equations (IL. 5) through (II. 8). To
test this hypothesis we made the following run for comparison.

Run E-8: 12° Inducer - 5 x 5 x 22 Grid - Forced Pressures

The geometry and initial assumptions for this run are exactly the same
ones as were used for the previous run. During the relaxation procedure,
however, the pressures are forced to satisfy

Pt 2
p = — (r2 92+w —uz-vz-wz) (1. 42)
2g0 1

This requirement introduces no mathematical inconsistency, because, for
zero inlet pressure, no inlet whirl, no losses and an incompressible
fluid, equation (II. 42) applies exactly everywhere in the flow field, Each
time one of the relative velocity components is varied at a grid point

(see Section I A, 3), the corresponding local value of the pressure is
immediately calculated from equation (II. 42)., Therefore, pj j k is no
longer an independent discrete variable.

Recalling the discussion of the take-up effect from Section II. B. 2, we
would expect the value of RMS to be higher for this run with forced
pressures than they were for the previous run, since D is lower due to
this elimination of pj, j, k. This comparison is shown in figure IL 19.
However, figure II. 20 shows that the relative circulation at exit is closer
to the true value when the pressures are forced to satisfy equation II. 42
than when they are free to be adjusted independently. From figure II 21
we see that the values of shaft power, Pg, and exit velocity head,

—~— . are essentially the same for these two comparative runs. The value
28, of the mass-averaged exit pressure head, (p/P), settles at 0.1635
for free pressures and at 0,1590 for forced pressures. A one-dimensional
calculation with zero deviation predicts a value of 0,1406 at the root-mean-
square radius, r = 0. 869, at the blade trailing edge, The most prominent
effect of forcing the pressures to satisfy equation (II. 42) is seen in the hub-
to-tip distribution of Vg (see figure II, 23). As was mentioned above, this
is the type of distribution we would expect for this problem.
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Figures II. 24 and IL 25 show a comparison of the resulting relative
velocity distributions on the blade surfaces for the two runs, Notice

that the numerical oscillations, present in the run where the pressures

are free, are almost absent in the comparable run with forced pressures.
This could be simply a grid-point density effect coupled with boundary
extrapolation influence. Comparison of the distributions of static pressure
on the blade surfaces is shown in figures IL 26 and II. 27. The latter shows
that unloading of the blades downstream of the trailing edges is shown very
definitely in the run with forced pressures.

Run E-9: 12° Inducer - 5 x 5 x 22 Grid - Two-Phase Flow

The purpose of this final run with the exact three-dimensional solution
method is to demonstrate that it will work for two-phase inducer flow
calculations. Our equation of state

Pt , P > Pgat
7
Pe (1.7

» P < Pgat

1 + T*(pgat — P)

was easily incorporated into the computer program. Because of the two-
phase flow effects, equation III. 42) is no longer applicable, of course.

Again, exactly the same geometry and initial assumptions were used as in
the preceding two runs. The following parameters were used for the state
equation:

Pgat = 0.0
Py =1.,0
T* =40.0

which simulates a flow of 36°R hydrogen or 450°F water in an inducer run-
ning at a blade inlet tip speed of 447 feet per second. Since the upstream

pressure is also zero, the hydrogen or water would be at the boiling point
upstream of the inducer inlet.

The RMS values for this five~cycle run differed from the corresponding
RMS values of Run E-7 by less than 0,002, At the end of the fifth cycle
the blade surface distributions of relative velocity (figure II. 28) are
essentially the same as those at the end of the 15th cycle of the comparable
incompressible run (figure IL 24), although the oscillations of some of the
distributions are somewhat reduced. This seems to indicate that these
oscillations are part of the numerical behavior for this size grid.
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Because the upstream stagnation surfaces, as we have selected and fixed them,
actually do work on the fluid, by the time the fluid reaches the blade leading edge

its pressure is already above saturation pressure. This is where the selection of
proper stagnation surfaces is crucial. The internal density distributions indicate
vapor in the flow region upstream of the blade leading edge. This vaporous region is
small compared to the entire flow passage. For a value of T*=40. 0 and an inlet
pressure equal to vapor pressure, we would expect a large portion of the passage to
fill with vapor (see table III.1 and figure III. 24).  The apparent unloading of the
blades, especially at the tip, is due to the fact that figure II. 26 shows the results of

15 relaxation cycles whereas in figure II. 29 are shown the results of only five cycles -
i. e. the solution has not been carried far enough to give the correct answers. The
rotational flow pattern for both the two-phase and the incompressible run are es-
sentially the same., All hub-to-tip distributions at the blade trailing edge, for example,
differ from each other by less than 0. 001,
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C. CONCLUDING REMARKS ON EXACT METHOD OF SOLUTION

The foregoing sequence of examples demonstrates the capabilities of our numerical
approach to an exact method for obtaining three-dimensional solutions of general,
continuum fluid flows in turbomachinery. That the method gives valid answers is
empirically evident as we now review the results of these examples.

1. Review of Problems Solved

The paddle-wheel channel examples with lossless, wheel-type flow indicate that a
convergent solution is always possible — the resulting root-mean-square (RMS)
residual for the incompressible case (run E-1) being much less than one percent.
While this capability for minimizing the RMS residual is borne out by all the other
examples, run E-2 (similar to E-1) illustrates it best by producing an answer of
1/10 of one percent, with no sign that this is remotely close the attainable minimum
(Figure IL. 7). Furthermore, run E-2 shows that two-phase flow effects can be in-
cluded successfully — and with no perceptible increase in computing time. Finally,
these two simple examples illustrate the deviations from the true answers that are
caused by discretization, i.e. by a finite number of grid points (3 x 3 x 3). Even
though the system of finite difference equations and other conditions can essentially
be satisfied in this special case, the solution to the comparable continuous problem
(infinite number of grid points) yields a different radial distribution of the pressure.

The three examples (runs E-3, 4, 5) of incompressible, irrotational flow in a paddle-
wheel channel illustrate the grid effects of typical problems. Here we observe the
numerical inconsistency of the (essentially arbitrary) linear extrapolations at boundary
points with the more complicated pressure and velocity variations there; i.e., the
RMS residual achieves a minimum (or nearly so) that is non-zero in each case. Even
though this residual is far enough from zero (Figure II. 9) for completely wrong answers
to be allowable by it, the results are fairly accurate (Figure IL 10). In fact, the
experiments that we conducted in runs E-4 and E-5 wherein we changed the problem of
run E-3 by extending the number of points and unknowns (without altering grid point
density) shows that a lower residual does not guarantee more accurate answers,
(unless it is sufficiently low): The additional adjustment of variables that was possible
in runs E-4 and E-5 illustrates this '""take-up effect".

The foregoing discretization error is probably not dominant in runs E-3,4 and 5, because
the cross-sectional density of grid points is about seven times greater than was the case
in runs E-1 and 2, (9 x 7 versus 3 x 3). The answers were acceptable — even with the
relatively high RMS residual results. We used approximately correct values as initial
assumptions, and starting with this lack of bias is probably the way to obtain reasonable
results when the minimum obtainable RMS residual is not low enough to guarantee

them. The numerical inconsistencies responsible for this inability to obtain such

a minimum would be less dominant for a greater density of grid points.
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The sample inducer examples that we studied in runs E-6 through 9 had no parallel
sets of previously known answers by which the results could be judged directly —

as was possible with all the other cases. However, results for similar geometries
using accepted simple radial equilibrium methods, (as was done in reference 6, and
by us in Section III, ) give an indication of what to expect. The 5 x 5 grid point cross-
section with the many additional points obtained by reason of the greater channel
length (up to 22 cross-sections) typical of inducers, yield the kind of answers that
would be expected from our knowledge of the irrotational flow results for the paddle-
wheel channel, (runs E-3,4,5). These inducer problems yield minimum RMS residuals
of order similar to that of runs E-3,4,5. (cf. Figures II-9, 13, 19). Although the
grid-point cross-section is 5 x 5, (vs. 9 x 7 for runs E-3, 4, 5) the channel inclination
angle 1is quite shallow and yields the higher grid-point density that probably accounts
for the differences between the inducers and the paddle-wheel channel.

However, a greater grid point density is needed to avoid the further numerical errors
that were probably introduced by using the convenient arrangement with highly oblique
intersections of the coordinate surfaces, (Figure A-2). This results from the fact
that inducer channels are inclined at such a low angle 8 to the tangential direction.

The foregoing conclusions about the take-up effect apply to the differences between the
12° inducer results for free vs. forced pressures, (runs E-7 vs. E-8). The latter
problem had fewer unknowns and thereby accounts for the higher RMS residual,

(Figure II-19). Here again, these residuals were high enough in both cases to allow
wrong answers, but the forced-pressure case seems to have insured reasonably accurate
answers, In effect, biasing the pressures toward results that are consistent with the
velocities reduces the grid-point density that is required; however, it restricts the
problem to the lossless case — which is what we solved in all our examples with the
method,

Finally, we could have obtained more accurate answers in the inducer examples if we

had adjusted the initially estimated upstream and downstream extensions of the blades

to unloaded positions as the solutions proceeded. The errors that we introduced by not
doing this are probably small compared to those that are caused by the coarse-grid
effects. However, the two-phase flow results of run E-9 are influenced by the fact that
the slight loading that did occur on the upstream stagnation stream surfaces prevented
vapor from forming in the locations where its effects are known to be most pronounced,
Here again we have demonstrated that two-phase flow calculations introduce no significant
changes in computing time and complexity.

2, Recommendations for Future Work

Since the numerical accuracy of this exact method appears to have a direct relationship
with the density of grid points, one must provide the attendant necessary computer
storage space and running time to reduce the residuals sufficiently, (see Appendix C).
This is characteristic of any valid finite difference technique.

79



A review of the data that we obtained in checking the method indicates that in its present
form the program (Appendix C) would probably give satisfactory results if one would
apply it to any typical inducer channel as follows:

a) Use a grid of 10 x 10 x 50 points, which compares to 5 x 5 x 22 that
we used.

b) Extend the stagnation stream surface boundaries about one channel
width upstream and downstream as we did it runs E-7, 8, 9.

c) Adjust the locations of these surfaces after each set of ten relaxation
cycles to maintain them in an unloaded condition; i. e., there should
be no pressure differences across them at the same radial and axial
locations.

d) Change the subroutine ADJ (Appendix C) to force the pressures to
satisfy equation II. 42 as we did in run E-8. This eliminates the
treatment of losses in detail; however, other expressions similar to
equation II. 42 can be devised to distribute losses arbitrarily and to
handle two-phase flow in combination with the barotropic relation
(equation I, 7) — subject to the inlet conditions of uniform pressure and
zero whirl,

As here proposed, the problem may yield a satisfactory solution in less than twenty-
five relaxation cycles at a cost of about one half hour of computing time per cycle,
(see Univac 1107 data in Appendix C). Proposal (d) on "forcing'' the pressures may
not be necessary if more computing time is allowed. It is simply a way of keeping
the problem within present limits of computer storage and calculation times, as the
general case would require even more grid points than 10 x 10 x 50 for an accurate
solution.

Further work on the method itself could yield the reductions in calculation time that
would allow the use of finer grids with the general problem (pressures not forced)

on existing computers. A method for automatically adjusting the stagnation stream
surfaces would save the time required to do it by hand in (c) above. As concerns the
computational algorithm itself, lower RMS residual values could be attained by treating
the wall boundary conditions (equation IL 9) as additional residuals and by independently
adjusting all velocity components at boundary points, (see Appendix A).

More advanced residual reduction techniques could be introduced to accelerate the
convergence rate, which might be partly accomplished with the existing program

by a judicious selection of weights to be assigned to the various residuals at each
grid point. As in the case of all developments and modifications in this method, such
improvements would require the closest cooperation between the fields of numerical
mathematics and fluid dynamics.
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SECTION III
APPROXIMATE THREE-DIMENSIONAL SOLUTION

A. METHOD OF SOLUTION

This section gives the assumptions and method for obtaining a rapid, approximate
solution to the system of equations and boundary conditions presented in Section I.
The resulting program (Appendix D) can obtain answers in about a minute on existing
computers and may therefore be used for purposes of assisting in design evaluations,
However, such answers cannot describe the detailed three- dimensional flow patterns
that include, e.g., blade loading at the leading and trailing edges and relative cork-
screw motion within the passages. Any basic study of the inducer flow field must

be made by the exact method of the preceeding section.

The philosophy for this approximate approach is primarily that of reference 1 in that
several assumed two-dimensional solutions of the blade-to-blade field are coupled
with a complementary two-dimensional meridional solution. As reasonable approxi-
mations for inducers, we have neglected the effects of streamline curvature in the
meridional plane and of blade forces normal to the streamlines in that plane. Also
presented is the form of the results which can be correlated with other theoretical or
experimental data,

1. Restrictions of the Analysis

We imposed the following restrictions on the fluid motion to obtain an approximate
solution:

a) The fluid flows throughthe inducer (figure III. 1) in annuli; i.e., in the
spaces between stream surfaces of revolution formed by rotating about
the axis of rotation the meridional projections of the streamlines of such
a flow, (Unless otherwise noted, the term streamlines will hereafter refer
to these projections.)

b) The stream surfaces have initially fixed locations at the leading edge of
the inducer blade (figure III. 1, view b). The upstream set of boundary
conditions is applied at that leading edge, thus precluding backflow.

c) Average relative velocity and pressure conditions exist at mid-passage
from blade to blade, (see figure IL. 2). These averages are results of the
meridional solution, and they are the quantities employed (with additional
assumptions) to determine the blade-to-blade solutions. Where two-phase
flow exists, we allow the meridional and blade-to-blade solutions to be
dependent on one another. '

d) The direction of the average relative velocity in a given annulus differs
from that of the blade meanline in the blade-to-blade plane (figure III. 2)
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a) Developed View of Surface of
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Line of Annulus
(See Fig. 1IL 1)
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FIGURE IIL. 2. BLADE-TO-BLADE FLOW ANALYSIS, SHOWING RELATIVE VELOCITY
FIELD IN AN ANNULUS. Note that this analysis is carried out at an intermediate
station; j', in order to find the loads caused by the changes of average flow quantities
from one main station to the next,
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by a predetermined deviation angle. In order to close the relative velocity
diagrams at exit, this angle is assumed to vary approximately with the
sixth power of length from the zero inlet value to the imposed exit value on
that annulus. The component of direction in the meridional plane is that-
of the mean line between the two bounding streamlines (figure III. 1).

The task is to find the equilibrium locations of the streamlines along each of several
fixed straight-line meridional quasi-normals in turn at successive stations from inlet
to outlet. At station 1, the blade leading edge, no such balance is required, as the
Iocations there are fixed by restriction (b).

Although the relative corkscrew motion that can occur in a real flow is precluded by
restriction (a), Stanitz showed (reference 12) that this superimposed motion has little
effect on the velocities and pressures of an essentially single-phase lossless flow in
the interior of the machine. Furthermore, we found that the total amount of this
relative rotation experienced by the internal fluid seldom exceeds one-half turn
because of the low work level of inducers. Finally, at low NPSH, the inlet region of
an inducer commonly unloads due to two-phase effects, which would then make
restriction (a) more acceptable there.

For the low blade-to-blade loadings of inducers, restrictions (c) and (d) should be
reasonable, The deviation angle distribution of (d) amounts to negligible deviation

except in the latter third of the blading, if imposed. In this way, the blade exit unloading
phenomenon can be approximately simulated.

This reasoning simply means that our approximate solution ought to give a fair indication
of inducer performance. However the three-dimensional (exact) method employs none

of these restrictions; and, when applied with sufficient accuracy, it is the ultimate
standard for a final design. Furthermore, basic observations of loss distributions and
their effects can be understood best in the light of an exact solution — even one of a
lossless flow,

2. Scalar Equations and Boundary Conditions

The foregoing restrictions lead fo a natural set of varying directions in which to apply
the equations of motion, using the (r, 8, z) right circular cylindrical coordinate system
(figures 1II. 1, 2):

a) The relative flow direction A, which is that of the foregoing restriction (d).
b) The direction of the straight-line meridional quasi-normal n'.
c) The tangential or blade-to-blade direction 6.
It is in these directions that we now express the three component equations of the vector

momentum equation (I. 2 or I.4). Since Ais the relative streamline direction, we use
the streamline momentum equation (I. 12) of Section I. A. 2;
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go dp (Qz r2> w2>
_ a (XY 1
> d 5 d (5 dL (II1. 1)

In the n' direction, we have the following simple normal equilibrium equation:

2
o dp Vg cos?
P dn' r (LI 2)

and in the @ direction, we use the moment of momentum equation in terms of the average
velocities and blade surface pressures, (reference 3, Appendix; and reference 15,
p. 287):

go Pp Ps__ dixVe)

5 g0, Vm—dm (IIL. 3)

Note that equation IIL 3 is an integrated form of the scalar momentum equation in the
9 direction (equation II. 2), which is

ip_—_'_p— V.

d
90 2o m -a?l (I‘ Vg) (III. 3&)

We require continuity throughout each annulus as follows:

dw=d[pr An (8 - 9p) M, Vm] =0 (L. 4)

Together with boundary conditions and equations (L. 7) and (I.13) for two-phase flow and
loss effects when required, equations (IIL. 1,2, 3, 4) constitute the complete set of
relations used in this method.

We note that equation (I 2) is obtained from the complete normal equilibrium equation
for this annulus-type flow problem (reference 4, p.29):

2 2

8o ¢9p Vg coSs 7y Vin B* d (rVg)

— —— — + e— ———————

P 9dn T e T Vim dm (OI. 5)
“— o— — o Nm— —
Pressure . Centrifugal Streamline Blade Force

Gradient Action Curvature

where
* a9 . GL)
B=r1 ¥y sin ¥ T r cos Y (II1. 6)
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Furthermore, (see figure III. 1)

dp_ _ 9p dn ap dm
@' 9n dn' | 9m_ dn' (IIL. 7)

If the quasi-normals are approximately perpendicular to the streamlines, we see that
the last term of equation (III. 7) may be neglected and that dp __ dp_ Omitting the

g .
effects of meridional streamline curvature and of the bladedfr(‘)rcéié1 only in the quasi-
normal direction; i.e., the last two terms of equation (IIL. 5), we then obtain the simple
normal equilibrium equation (III. 2). Provided we take the care to specify the (fixed)
locations of the quasi-normals properly, the fairly axial, long, straight meridional fields
and nearly radial-element-blades of inducers should make this omission of terms less
serious.

In accordance with the restriction in Section II. A.1, we summarize the boundary
conditions on this problem as follows:

a) The wall boundaries (Section I. B. 1) extend only from the blade leading to
trailing edge. Beside the blades, hub and shroud, these also include the
stream surfaces of revolution (streamlines), whose locations are fixed at
the upstream boundary.

b) The upstream throughflow boundary (Section I. B, 2) is at the blade leading
edge. There we specify for each annulus the respective inlet values of p,
Vi and Vg. The direction of V,, is determined by the given slope of the
blade leading edge (not necessarily a straight line in the meridional plane);
therefore, V; and Vé are implicitly specified, No tangential variation of
these quantities is assumed.

c) At the downstream throughflow boundary (the blade trailing edge), we
specify the respective predetermined values of the tangential average
exit deviation angle dex for each annulus. The exact locations of these
annuli result from the solution; however their positions can be estimated
closely enough to find the necessary values of édex if its distribution from
hub to shroud is not uniform. The program as presently constructed
requires that a quasi-normal coincide with the blade trailing edge, and
therefore, that this edge be a straight line in the meridional plane.

3. Meridional Streamline Balancing Procedure

Determining the equilibrium positions of the meridional stream surfaces of revolution
chosen at inlet is the object of this approximate method. We identify the coordinates
of each streamline by the index (subscript) i where
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1 £i £ g

Hub Shroud

Similarly, each quasi-normal is identified by the index (subscript) j (the Station number)
where

1 2§ = 9

Blade Blade
Leading Trailing
Edge Edge

All fluid variables (p, p, W, V) are associated with annuli, not the streamlines;

i. e., they are assumed toexistonthe mean line of annulus i' which lies midway
between streamlines i and i + 1. Thus the total number of annuli is qi - 1. The
same identification applies to the average coordinate quantities n'j' j, (with
corresponding ri',j, and zi',j, ) which locate the mean line of annulus i'. The
computational procedure begins from the specified data by calculating the mass flow
rates wi, and relative velocities Wi j for each annulus i' at the blade leading edge
station (j = 1). We then proceed as follows at station 2 (j = 2):

a) We estimate the streamline positions n'j, j, » Ti,j and zij, j on the
quasi-normal j by assuming the same spacing proportions as at
j - 1. Next we find the corresponding channel angle data 8g, i', j and Qp’ i')j
from a blade subroutine for the given blade shape and thickness,
which includes boundary layer displacement thickness. From this
and similar data at stations j - 1 and j + 1, we obtain the relative
flow angle B8j' j in the plane tangent to the mean stream surface of
each annulus i', allowing for deviation, if any, (see figure IIL2).

b) Applying the continuity equation (II. 4) in finite-difference form we

obtain the average velocities V. . . as follows:
Vim, i i~ L II. 8
e [PrAn(Qs—Qp)] (L. 8)
i',j

With the angles B we now obtain also the velocities Vg and W. If we

are not restricted to an incompressible analysis, this and the following
step are coupled to the blade-to-blade solution in the portions of the
machine where vaporization occurs. In such a case, the value of

Pi',j is unknown and must be found from an iteration of equations III. 8
and TI. 9 with steps (a) through (f) of the blade-to-blade solution for two-
phase flow, (see Section III. A. 4).
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c)

d)

e)

Next we obtain the average pressures pj', j from the streamline momentum
(equation (IIL. 1)) expressed in finite-difference form:

p. +p._ 92 1
o 71 Yol 2 2y _ 1 2 _ 2) _
pi',j = pj—l + ———2g0 [ 5 (rj Ti.1 > 3 (W] Wj-l dL (I11. 9)
i'

where dL is similarly expressed by finite-difference forms of equations
(I. 13, 14, 15),

Now we form the streamline unbalances Uj_j for all i from the simple
normal equilibrium equation (I, 2), (i = i):

2
Pyt - Pit-1 P +Pir1 (V i' + Vg i - 2>
U = — NG W\ VLR 9.1 -1 (II1. 10)
1’] n'.'_nV.' 4 ,/ ¥
i i' -1 g0 ri/cos Y j
where no U's are needed for the hub and shroud streamlines (i = 1 and
qj respectively). These indicate the extent of error in the original
estimates of the streamline positions in step (a).
In the following steps, we adjust the streamline locations n'j j at station
j to satisfy the same accuracy criterion developed in Section II. A, 4.
Here, we require (similar to relation (II. 19) that the unbalance U be
limited as follows:
P
U £ e (9219 s (1. 11)
go

where € is some small number,

The relation of this error to the overall results is less serious than the
discussion of Section II. A, 4 would indicate. It affects the hub-to-shroud
distributions, but not the accuracy of the inlet-to-outlet annulus results in
themselves. Continuity is satisfied in each annulus, and the correct pressure
rise from inlet to outlet of it will result if on the average each annulus is
balanced with relation to the others. Any cumulative effect due to bias in

the unbalances is small, and in the lossless case it is non-existent — the
overall pressure rise error then depending on bias in the unbalances (due

to €£0) at the exit station only. Note that "unbalance" U is an error in

the normal pressure gradient -%%, (i.e., %% in typical inducers).

The adjustment sequence at station j follows:

If all the Ui, j satisfy condition (III. 11), we consider the problem solved
from the inlet to this station j. In such a case, we proceed to the next
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station (j + 1) and repeat the steps just outlined, beginning with step (a).
If, however, this required accuracy does not exist, we execute the following
steps starting with streamline i = 2 at station j:

f) We determine a new streamline position (n' + An')j j by the second order
Taylor approximation, (see equation (II.17)):

U aZU
' Vot .1
n'+An' =n ( ™ / '2> (TII. 12)

where the U derivatives are evaluated by moving the streamline by
amounts + &n' and executing steps (b) through (d) for each such movement,
In the event that the U versus n' relation is not sufficiently second order
for the adjustment given by equation (III. 12) to cause a reduction in Uj j,
we accept whichever result of the + §n' calculations did cause a reduction,
if indeed one occurred. (This alternate method was necessary in the two-
phase flow cases. It does not force a wrong answer but merely insures
that the unbalance U will be reduced in cases where the usual method cannot
accomplish this.) If required to obtain U reduction, é&n' is reduced as in
the method of successive variations (Section II. A. 3) at the end of each
cycle,

g) We repeat step (f) for the next streamline, i = 3, and so on throughi=qj -1,
which completes one (hub-to-shroud) iteration cycle. Then we return to
step (e).

In certain cases where a very small value of € in equation IIL 11 would
require may iteration cycles, the number of cycles can be limited and the

results accepted at the accuracy then achieved, (see Appendix D).

4. Blade-To-Blade Solution

Except for cases where pressures in the blade-to-blade solution are lower than the
vapor pressure pgat, there is no influence of this solution on the meridional one of
the foregoing section. For two-phase solutions, we make a blade-to-blade check for
vaporization each time an average density Py, j is required by steps (b) and (c) of

that section. The blade-to-blade solution associated with a given station j is actually
carried out at j' which is halfway between j and j - 1, (see figure III.2). The results
are the fluid relative velocities Wp’ i, and Wg {',j', pressures pp,i',j' and pg_j', it
and densities Pp i’ j', and Ps,i',j' on the pressure and suction sides of the channel,
respectively.

The meridional field does of course determine the blade-to-blade solution, and the
key to this is the moment of momentum equation (IIL. 3). To use simply this equation
two assumptions are required; viz., a 0 distribution of one of the variables and a
statement about the accumulated losses versus 8. For the first, a linear distribution
p(8) (reference 2) or W(0) (reference 1) is generally assumed. Both of these give
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nearly the same results for the light loads in the incompressible case, However, in
the two-phase case the linear pressure approach causes unrealistically high W's on

the non-liquid suction side of the channel besides specifying an appreciable pressure
varijation over a region that is essentially vaporous (reference 8, p. 4-16). So we
chose the linear velocity model, which best fits all cases. For the second assumption,
the only convenient approach is to state that fjdL along all relative streamlines in
annulus i from inlet to station j' is uniform. Then the streamline momentum equation
(I. 12) holds on all streamlines from blade to blade (r = constant), and it may be em-
ployed together with the state equation (I.7) to relate the 6 distributions of the variables
p, W and p.

Having chosen the linear velocity model, we next obtain the relationship between W(8)
and the velocities of the meridional solution which are averages. As in reference 1,
we assume

[ Wt W _
P ) = Wit o (III. 13)
| 1

= RS
Wi‘,j‘ = (--T-___) ) (I11. 14)
as does the pressure, f)., .1, lies at mid-passage, where p is defined similarly. In

accordance with the foregoing assumption about the losses, we now combine the moment
of momentum equation (III. 3) with the following form of equation (I. 2) for use in the 8
direction (r = constant):

Bodp _ _waw (IIL. 15)

Assuming
) —I;}: : ;’: - .g.g_ (ITL. 17)

we obtain

(II1.18)

215k

.y mJ - mj—l

(), 16

b

) CY%,5- i1 V0, j-1
]
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dw
where, by assumption, (HE‘) in,j' = constant with 8, and with equation (III. 13) we
now have the blade-to-blade velocity distribution, Applying equation (IH.15) and
remembering that the mid-passage value is 13i', j', we immediately obtain the
pressure distribution if p is constant. This completes the blade-to-blade solution
for the incompressible case.

For two-phase flow, we proceed as in the incompressible case for all portions of the
blade-to-blade region in which p 2 pgat, (see figure (II.3). In the portion where

P < Pgat, we determine the density distribution from a combination of the two-phase
state relation (I.7) and equation (IIL 15); and the pressure on the blade surfaces is
similarly calculated. There are various forms of these combinations, depending
upon how much of the passage is occupied by liquid or two-phase fluid, (see figure
II.3). This completes the blade-to-blade solution for the two-phase case,

In the course of the meridional solution (Section IIL A. 3) steps (b) and (c) required an
average Pj' j that can be obtained only from an iterative portion of the blade-to-blade
solution at station j' when two-phase flow exists at j'. Once the final, correct Pj' j

is supplied by this iteration for the balanced streamline positions at station j, the
final blade-to-blade solution is made as outlined in the preceeding paragraphs for both
the incompressible and two-phase flow cases and for all annuli at station j'. The
iterative steps for obtaining rj' j are as follows:

a) Assume Piv’j = Pg
b) Execute steps (b) and (c) of the meridional solution.

c) Obtain the blade-to-blade density distribution from the applicable comkbi-
nation of equations (I. 7) and (III. 15).

d) Calculate the blade-to-blade average density:

0
fSPdO

- °p
P iy = \——gm (IIL. 19)
S P il’jv
e) Check continuity at station j' as follows: *
2 Pii+ Py, -1
USRI o (III. 20)

* A better form of continuity check than that of equations (III. 19 and 20) is simply that

I~

]
Pi',j-k-Pi',j—l —
-[) P Wdo 5 Wit 1 (85 - 6p) (TIT 21)
p i',j'

This would avoid the slight continuity errors introduced by the concept of an average
density P at station j' in equation (III. 19).
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f) If the difference between these averages is greater than . 001 of the
right hand side, we reduce Pj' jby a small amount and repeat steps
(b) through (f). If the difference is less than . 001, we accept the current
value of Py for use with the meridional solution, (steps (b) and (c)).

Figure III. 4 shows the kind of variation that results for each side of equation (IIL 20)
as the assumed average density Pjr j is changed from Pr to successively lower values.
The iteration procedure contains safeguards to avoid the solution bb (figure III. 4) for
negative blade loading and to handle properly the choked annulus case for which no
solution exists. First, if solution aa exists, it will be reached first as the blades unload
with decreasing values of the assumed ¢y j. We found that if no solution aa exists,
there will be no bb solution either, since a negative blade loading causes a reduction
of average pressure from station j - 1 to j with corresponding increased vaporization.
So, if no solution exists; i, e,, if the annulus is choked for current positions of the two
bounding streamlines, this fact is noted by thecomputer, and we use the value of Py j
for essentially zero blade loading (specifically, the value obtained at the point in the
iteration for which Vg = 0) in steps (b) and (c) of Section III. A. 3. If the streamline
adjustment sequence ultimately yields no balanced positions of the streamlines at
station j (steps (e), () and (g) of Section III. A. 3) for which all the annuli are unchoked
at j'; an appropriate message is printed at the end of a maximum allowable number of
balancing cycles, and the calculations are discontinued.

5. Form of the Results

The procedures for obtaining the meridional and blade-to-blade solutions yield sets of
hub-to-shroud results at each station j and at j'; i.e., respectively along and between
the quasi-normals of the meridional solution from inlet to outlet. At j we give the
resulting set of streamline coordinate locationsr and & and the final unbalances U.
The set of average annulus values W, V_, V., Vg, Vg, p and p are each also given
for j. At j', we give the blade-to-blade results for each annulus at the blade surfaces
and at mid-passage; viz., Wp, Ws, VTf, Pp, Pg P, Pp, Pg; and p, which does not lie
at mid-passage, (see figure III. 3) and equation (III. 19)).

At the blade trailing edge (j = qj) we also calculate blade element performance data and
finally the overall performance of the machine. The blade element data applies to fluid
in each annulus and is calculated as follows:

a) Total head loss coefficient:

PV Vi

+
g g Py P Zgo 2go

el
l

(I11. 22)
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b) Annulus efficiency:

P2 _ P1 V2 vy?

Py~ P1 2% 28
U2Vg,2 U1Ve,1

8o & i’

”i' =

The overall performance is calculated from the proper averages of the

annulus (i') data at inlet and outlet:

a) Mass flow rate:

-1
9

T T Z Wy
=

where the w; are given by equation III 4 for use in the program

calculations.

b) Mass-averaged total head rise
q.-1
2

2%, 2%

— i'=1

12: P2 PV v,2
P2 T TPy -

W

c) Mass-averaged pressure (calculated at inlet and at outlet):

Z Pir Wy

i'=

5:
W

d) Mass-averaged absolute velocity head calculated (at inlet and at

outlet): q.,-1

. Vm,2 * V92
2 E 2 i'

\Y i=1 go

2g0 W
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(II1. 23)

(II1. 24)

(IIL. 25)

(IIL. 26)

(IIL. 27)



q;-1
1 W
Tq= + 2 (rz Vo,2 - 11 Vg, 1)y i (TI1. 28)
Bo 11 ’

f)  Shaft power input:

(II1. 29)

g) Overall efficiency:

P P Yy Vi
z : —- + - L wy (TIL. 30)
i'=1 i

Observe that the overall efficiency ™ is equivalent to an energy average
of the elemental efficiencies ;.

B. EXAMPLES AND RESULTS

The approximate method was used to solve a series of problems on the same variable-
lead inducers to which we applied the exact method in Section III. B. 3. This section
presents the results for the 6. 2° and 12° inducers - which are described in figures II. 12
and II. 18, respectively - for (1) incompressible, lossless flow, and (2) other runs with
loss and two-phase flow. In table III. 1 we list the representative runs reported in this
section; although we made some additional runs to obtain more data for the conclusions
of Section IV. As in Section II. B we performed all calculations nondimensionally,
according to the system presented at the end of the list of symbols.

1. Incompressible Results and Correlations for Lossless Flow

We now compare the results of the approximate method of solution with those of the
exact method, (Runs numbered A and E, respectively), using the following data from
table III. 1: '

a) 6. 2° Inducer:

Runs A-1 and E-6
Figures III, 5, 7, 8
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b) 12° Inducer:

Runs A-10, E-7 and E-8
Figures II1. 6,9,10,11,12,13

On each inducer, we used an 8 x 16 field; i. e., one with eight stream-
lines including hub and shroud, and sixteen stations including the blade
leading and trailing edges. Because of the special geometry we used
equally-spaced radial lines for the quasi-normals at each station, The
eight streamlines were equally spaced at station 1. Refer to figures IL. 12
and II. 18 for geometrical details, including the axial locations of the
stations.

The overall performance data also appears in table III. 1 in terms ofAthe static pressure
rise coefficient ¥, total head rise coefficient ¥, power coefficient Ps and overall
efficiency % . Tﬁese are the non-dimensional values of the corresponding quantities
presented in Section ITI. A.5. The corresponding data for the exact methods of solution
of these two inducers is also given (from figures IL 15 and II. 21). We obtained a fairly
close correlation of these results and the approximate ones (Run A-10) for the 12°
inducer. Lack of such a correlation for the 6, 2° inducer is probably the result of a

7% error in the fixed outlet throughflow velocity distribution that we made in applying
the exact method, (see description of Run E-6 in Section IL B. 3).

This difference is more clearly shown in the radial distributions of velocity and
pressure at the blade trailing edge in figure IIL 5, especially for the Vz component,
which distribution was fixed in Run E-6, The unusual Ve distribution of run E-6

is probably due to the grid effect. TFigure IIL 6 for the 12° inducers shows close cor-
relations between Runs A-10 and E-8, the latter being the forced-pressure case of the
exact method, (see theRun E-8 discussion in Section II. B. 3). Because the quasi-
normal direction n' is radial, equation IIL 2 becomes that for simple radial equilibrium;
so, we expect this governing equation of Run A-10 to give the type of Vg and Vg distri-
butions shown for this radial-element-bladed inducer. Figure 2 and equation 13 of
reference 6 show that the Vg distribution for lossless flow is essentially free vortex.

As we compare these results, we must keep in mind the high numerical accuracy that
we were able to achieve with the approximate method as compared to that of the exact
method of analysis, (Upax vs. RMS residual). The overall numerical error for a
given RMS residual (an average) can be higher than the product of it times the length
of the inducer, (see Section IL A. 4 and equation II. 20); but this error for a given
Upax is of order less than Umax times the radial length of passage at inducer exit.
(Refer to the discussion in step (d) of Section III. A. 3, and note the negligible differences
between the reailts of the runs in Table ITI. 1 for Umax = .01 and . 001.) Note
however that high numerical accuracy of an approximate method does not guarantee
exact results. On the other hand, evidence of tests is that the simple normal (or
radial) equilibrium assumption used in the approximate methods is a reasonable basis
for judging results, TFinally we must remember that the numerical inaccuracies of the
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coarse grids that we used for the exact method do cause errors, but that this does
not invalidate the method; (see the discussion at the end of Section II).

The blade surface relative velocity and pressure distributions at hub and tip from

inlet to outlet are shown in figures III. 7 and IIL 8 respectively for the 6. 2° inducer,
Blade-to-blade differences are generally comparable for A-1 and E-6. (See figures

II. 12 and II. 18 for station locations). For the 12° inducer similar correlations of

Run A-10 appear in figures III. 9 and III. 11, with the free-pressure run E-7, and in
figures IM. 10 and III. 12 with the forced-pressure run E-8. The absence of deviation
allowance in the approximate run A-10 could account for the high loads obtained by

it at exit. The extension of the flow analysis into the downstream region in the runs E-7
and E-8 might be responsible for some of the unloading observed at exit, especially

in figures III, 10 and III. 12,

Finally, for the latter three runs, figure III. 13 gives the correlation for the distributions
of pressure and relative velocity from blade to blade at constant radius and axial position.
This data is shown for a point halfway from hub to shroud in the interior of the 12° in-
ducer. Here, as in the radial distributions at exit, the forced pressure and approximate
runs (E-8 and A-10) correlate better; although, there appears to be a persistent kink in
the velocity distributions obtained by the exact method. This needs to be distinguished
from the approximate approach which assumes a linear velocity distribution from blade
to blade,

This completes the presentation of results by the approximate method which are directly
comparable with those of the exact method. The two-phase run E-9 by the exact method
requires changed positions of its upstream stagnation stream surfaces (so that they are
unloaded) in order to obtain a solution with which we could correlate comparable approxi-
mate results.

2. Effects of Two-Phase Flow and Losses

We made two sets of runs on the 6.2° and 12° inducers to investigate the effects of the
loss relation (I. 13) and the barotropic vaporization equation II.7). These runs are
summarized in table III. 1,

First we compare the foregoing incompressible, lossless runs with those for incom-
pressible flow with loss

6. 2° Inducer: Runs A-3, 4, 5 in figures III. 14, 16, 17 are compared with
Runs A-1 and 2 which are corresponding results for no loss.

12° Inducer: Runs A-12, 13, 14 in figures II. 15, 16, 18 are similarly
compared with Runs A-10 and 11,

We found that a 4 x 16 field gives the same results as does an 8 x 16 field — within a
very small error. The exit radial distributions of figures III. 14 and III. 15 show this for
the 8 x 16 runs A-1, 3, 10, 12, which compare with the 4 x 16 runs A-2, 4, 11, 13
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FIGURE III. 7. AXIAL DISTRIBUTION OF BLADE SURFACE VELOCITY FOR
INCOMPRESSIBLE, LOSSLESS FLOW IN 6,2° INDUCER. Results by exact

method are also shown for the fixed Vz 9 distribution of Figure II. 14,
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Run No. Method
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A E-7 Exact: Free Pressure
.72
.70 v
C
.68 /,/
Relati.ve o T ,// HH
Velocity . /‘Ir iJ
v r_ ¢ 11 L] L 7
dEl=;
.64 rhy
.62 v
g A } -
& L
.14 *
.12
g A
10 ™ JAN
Static Pressure - LJ\\ ES A
P 05 3 0
. ‘\ é
U
.06 S
1l N
.04 -
0 0 ]
p s

Circumferential Position, 6

FIGURE IH1.13. BLADE-TO-BLADE DISTRIBUTIONS OF PRESSURE AND
RELATIVE VELOCITY, SHOWING COMPARISON OF EXACT AND
APPROXIMATE METHODS. Incompressible lossless flow in 12°
inducer at the central interior point, # = .7600 and r = . 7556.

108



respectively. Because of this accuracy and a greatly reduced computing time, all
approximate runs reported employed a 4 x 16 field, except for A-1, 3, 10, 12, The
approximate positions of the resulting three annuli are shown in figures III. 23 and
II1. 24,

We define the parameter that determines the variation in loss as the machine Reynolds
number: :
2
Qrg )1
—

Ry, = (II1. 31)
Table III. 1 shows the two values of Ry, that we used. Rm = 2.5 x 107 results if

either inducer has a 5. 37 inch inlet tip diameter and pumps liquid 36°R hydrogen

at 9,550 rpm. At 19,100 rpm, this gives R, =5 x 107, Similarly we get

2.5 x 107 pumping 267°F water at 9,550 rpm with a 6-inch diameter inlet. The
resulting Reynolds number effect, (cf. runs A-4 and A-5 in figure III. 14), is notice-
able for the 6. 2° inducer, which has a large solidity and therefore much skin friction
loss (equation I.14). For the 12° inducer, which had much less solidity, the difference
between runs A-13 and A-14 is barely discernable in figure III. 15 and the overall
performance data of table III, 1. This frictional difference between the two machines
also accounts for the much greater effect of any loss on the results for the 6. 2°

inducer which had about 70% efficiency as compared to 95% for the 12° inducer.
Especially noticeable is the change in exit velocity distributions caused by losses,
(figure III. 14).

The differences between the 6, 2° and 12° inducers for these incompressible loss cases
is seen in another way in figure III, 16 which gives the corresponding blade element
data. NASA test results (reference 31) and a 12° constant-lead inducer are given for
qualitative comparison purposes. Our resulting theoretical distributions of loss
coefficient @ appear to be qualitatively correct. The NASA inducer has a high %

at the tip, probably because of tip leakage and secondary flow losses and maybe because
of the low blade angle at outlet as compared to the 12° variable-lead inducer (figure
I1.18). Our loss coefficients (equations I.14 and I.15) may need to be increased and
distributed differently to give accurate results. (See the discussion in Section IV.)

Figures MOI.17 and IIL 18 show the loss effects onblade surface velocity and pressure
distributions. Here the data is given simply for the mean annulus, the location of which
changes very little with the different solutions, (figures III. 23 and IIL. 24). The same
differences between the 6. 2° and 12° inducers are evident here also.

Next we present the comparisons of these incompressible, loss runs with those for
two-phase flow with loss as summarized in table III. 1.

6.2° Inducer: Two-phase runs A-7 and A-9 are compared with
incompressible run A-5 in figures III. 19, 20, 21, 23,
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Run Field Rm
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FIGURE IIL. 14. EFFECT OF LOSSES ON RADIAL DISTRIBUTIONS OF OUTLET

VELOCITY AND PRESSURE FOR INCOMPRESSIBLE FLOW IN 6. 2° INDUCER.
Note accuracy of results of runs with three annuli (4x16) as compared to those

for seven annuli (8x16). Also note Reynolds Number effect in runs with loss,
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FIGURE III-15.

3 Run Field Ry, ‘
[ —O— A-10 8x16 o (No Loss)
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EFFECT OF LOSSES ON RADIAL DISTRIBUTIONS OF OUTLET

VELOCITY AND PRESSURE FOR INCOMPRESSIBLE FLOW IN 12° INDUCER.
Note close correlation of three-annulus (4x16) and seven-annulus (8x16) results.

Also note Reynolds Number effect.
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Run Rm Field Inducer Notes
| A-3 5x 107 8x 16 6.2° See Table III. 1 for
o A-4 5x 107 4x16 6.2° further information on
h analytical 1ts.
d é-5 2.5 x 107 4x16 6.2° these analytical results
—-{ A-12 |5x 107 8 x 16 12°
A-13 |5 x 107 4x16 12°
O a-14 |2.5x107 | 4x16 12°
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FIGURE 111,16, COMPARISON OF INCOMPRESSIBLE FLOWS WITH LOSS FOR
6.2 AND 12° INDUCERS, RADIAL DISTRIBUTIONS OF OUTLET ANNULUS
EFFICIENCY AND LOSS COEFFICIENT. Also shown are experimental results
for a flat plate 12° NASA inducer with a constant hub-to-tip radius ratio.
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Run Blade '
No. Surface Description
O Pressure
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FIGURE IMI.17. COMPARISON OF BLADE SURFACE DATA FOR
INCOMPRESSIBLE FLOWS WITH AND WITHOUT LOSS FOR 6. 2°
INDUCER. Axial distributions of velocity and presure in mean

annulus,
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FIGURE 1II. 18. COMPARISON OF BLADE SURFACE DATA FOR
INCOMPRESSIBLE FLOWS WITH AND WITHOUT LOSS FOR 12°
INDUCER. Distributions of velocity and pressure in mean annulus.
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12° Inducer:

Two phase runs A-16 and A-18 are compared with
incompressible run A-14 in figures IIL 19, 20, 22, 24,

These six runs were all made at the same machine Reynolds number, Ry = 2.5 x 107,
Single-phase liquid flow existed just upstream of the blading and the inlet flow co-
efficients (51’ ¢ for the 6.2° and 12° inducers were 0. 083 and 0. 1763 respectively.

In order to understand the two-phase phenomena as shown in these results, we should
first review the performance parameters involved. For a given inducer, reference 8
showed that our flow model analyzes the influence of four dimensionless parameters on

a fifth one, We express this as follows:

‘I,: \If(¢1’fs Rma \I/Sp’ @ )

where the following definitions apply:

Total head rise coefficient

Ut,

12

2o AH

Inlet liquid flow coefficient

@1, f

’

il

wT
Pt A1 Ui

Machine Reynolds number

Rm

2
QT 1
14

Cavitation coefficient

Yep
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where T* is defined in equation (I. 8). Table III. 1 lists these for each run. Because

of the many existing cavitation parameters, we have listed other useful forms in

table III. 1 besides ¥gp. These all express dimensionlessly the excess of inlet pressure
over vapor pressure:

Suction specific speed:

g Vo |
= — TI1. 37
P1 - psat) 3/4 ( )
go _pf
Cavitation number:
K = 131 - Psat
- P 2 (III. 38)
_iljt’_l__ (1 + Ql f2)
2g0 ’

The effect of different combinations of inducer speeds and fluids at constant values
of these cavitation parameters is expressed by the vaporization parameter ©,
(equation III 36). Accordingly, we made two-phase runs for various combinations of
¥, and ©, holding Ry, and ¢1’f constant. Figures III. 19 through III. 24 give data for
©® = 10 and 1000. * Even though we used a lower ‘I’sp for the © = 10 case, the volume
of vaporizing fluid, and its effect on performance was considerbly less than for the
© = 1000 cases. Therefore, the incompressible case and the © = 1000 case for each
inducer are presented in figures II1.19 and ITI. 20. The exit radial distributions,
given in the first of these figures, show the effects of internal two-phase motion
primarily on the pressure. This is shown also in the overall performance data of
table III. 1. The loss coefficient data in figure III. 20 shows that most of the effects
are felt at the tip, as would be expected. The fact that we did not get more two-phase
performance deterioration (as compared to non-cavitating values) is probably due to
our omission of tip leakage vortex vaporization effects and our apparently low loss
factors, which apparently did not allow for the actual distribution of secondary flow
losses; (see foregoing discussion of incompressible flow with loss). Also, if we had
concentrated an additional annulus near the shroud, our results might have shown
more performance deterioration. The average relative velocity of this annulus would
be higher and would therefore lead to larger local pressure drops and the consequent
vapor formation, In early check-out work that we did on this method using a 2 x 16
field (one annulus only) we were able to obtain two-phase solutions at slightly lower
NPSH than was possible with the 4 x 16 field.

—
hl

* For dimensional examples to which these solutions apply. See Table IV. 1.

116



.
bl

Run No. ® Flow Inducer
O A-5 Incompressible 6.2°
-3 A-9 1000 Two-Phase 6.2°
a A-14 Incompressible 12°
—0—| A-18 1000 Two-Phase 12°
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FIGURE I1.19. EFFECT OF TWO-PHASE FLOW WITHIN BLADES ON RADIAL

DISTRIBUTIONS OF OUTLET VELOCITY AND PRESSURE FOR 6.2 AND 12°

INDUCERS (Rp,

2.5 x 107),
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Run Description Inducer
No.
—O—1 A-5 Incompressible 6.2°
~{}4 A-9 Two Phase 6.2°
—— A-14 Incompressible 12°
--O-- A-18 Two Phase 12°
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FIGURE III.20. COMPARISON OF OUTLET PARAMETERS FOR TWO
PHASE AND INCOMPRESSIBLE FLOWS WITH LOSS IN 6.2° AND 12°
INDUCERS. Reynolds number, R, = 25x 107. Radial distributions
of outlet annulus efficiency and loss coefficient at blade trailing edge.
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Run No. © Blade Surface Description
A-5 Pressure Incompressible
- Suction
= - P
A3 A-7 10 LI Two-Phase
-0-- Suction
O P 'y
A-9 1000 ressure Two-Phase
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FIGURE III. 21. - EFFECT OF TWO-PHASE FLOW ON AXIAL
DISTRIBUTIONS OF BLADE SURFACE PRESSURE, RELATIVE
VELOCITY, AND DENSITY IN MEAN ANNULUS OF 6. 2° INDUCER.
NOTE: Answers are approximately the same as in Run No. A-5
unless otherwise shown,
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Run No, (C] Blade Surface Description
-0 Pressure »
A-14 Incompressible
e Suction
A Pressure
A-16 10 Two-Phase
- Suction
-0 Pressure
A-18 1000 Two-Phasc
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FICURE ITI. 22. EFFECT OF TWO-PPFASE FLOW ON AXIAL DISTRIBUTIONS
OF SURFACE PRESSURE, VELOCITY, AND DENSITY IN MEAN ANNULUS
OF 12° INDUCER. Note: Answers Are Approximately The Same As In Run
No. A-14 Unless Otherwise Shown,
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(a) Extent of Two Phase Flow flow unless otherwise indicated.

(by Average Pressure in Mean Annulus

Average Static Pressure, p
.
T

—Eﬁﬂ'ﬂ— W giAs
X

4 7 10 13 16

Station

FIGURE II1.23. DOMAINS OF TWO-PHASE & INCOMPRESSIBLE FLOWS
FOR 6.2° INDUCER. Losses included: R, = 2.5 % 107. Postions
of streamlines are approximately as shown for all 3-annulus runs
with this inducer. Note that extent of two-phase region increases
with severity of cavitation (part a), and that pressure buildup is
correspondingly delayed (part h).
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FIGURE III. 24. DOMAINS OF TWO-PHASE & INCOMPRESSIBLE FLOWS FOR

12° INDUCER.. Losses included: Ry — 2.5 x 107. Positions of streamlines
are approximately as shown for all 3-annulus runs with this inducer. Note that
extent of two-phase region increases with severity of cavitation (part a) and

that pressure buildup is correspondingly delayed (part b).
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The fact that the upstream regions within inducer blading unload at low ¥gp and high ©
is shown in figures II. 21 and III. 22, where the distributions of blade surface density,
velocity and pressure in the mean annulus are given in three cases for each inducer.
First, the incompressible case gives the "'front loading' characteristic of inducers.
Second, the ® = 10 case produces some front unloading and a density reduction on the
suction side of the blade. Finally the ® = 1000 case produces more unloading and a
greater suction side density reduction. Thus it appears that even though ¥gp = 0

in the cases of ® = 10, there was only mild cavitation due to the low vapor volume,

® = 1000 at higher ¥gp was the more severe case as evidenced by the overall perfor-
mance deterioration that occurred, (see figures IV.4 and IV. 3) In all cases the
essentially unchanged outlet velocities require that the blades must carry the same
load. It merely shifts back farther into the inducer under cavitating conditions,

A more graphic illustration of these same two-phase effects appears in figures TI. 23
and III. 24, where the portions of the machine occupied by two-phase fluid are shown
in part (a). Table III. 1 shows that we probably did not compute runs A-7 and A-9

for the 6.2° inducer with sufficient streamline balancing accuracy as compared with
run A-18 for the 12° inducer on this basis. This accounts for the lack of vapor in

at least the mean annulus between stations 2 and 3 (§' = 3) in figure III. 23. The
unloading phenomenon is illustrated in parts (b) of these figures in the effect that it
had on the distribution of average static pressure rise in each case.

C. CONCLUDING REMARKS ABOUT THE APPROXIMATE METHOD OF SOLUTION

The streamline balancing method of obtaining a rapid, approximate solution to single
and two-phase inducer flows gives accurate numerical results even when only three
annuli (four streamlines) are used for the calculations. It is a way of quickly judging
or grading an inducer to determine whether the more detailed and lengthy analysis by
the exact method is merited. (An exact description of the flow can be obtained only by
this latter method, and by using a sufficiently fine grid.)

In this approach we employed assumptions that appear to be justified for typical inducers,
but which may cause some inaccuracies, These are the omission of the meridional
streamline curvature and blade force effects and of the upstream and downstream flow
regions; the restriction of flow to concentric annuli; and the blade-to-blade analysis
assumptions (Section III. A.4). Results for incompressible flow are in accordance with
known data where the same assumptions are used, (e.g., reference 6).

Results for two-phase flow are qualitatively correct; and they demonstrate the ability

of the method to describe the blade loading shifts that occur at low NPSH. The loss
factors appear to be weak, because these two-phase effects did not cause sufficient
pressure rise deterioration as compared to that of tests. For example, the comparison
of our 12° variable-lead inducer with the NASA 12° constant lead one in Figure III 16
shows greater loss at the blade tips of the latter, which yielded lower efficiency than

we obtained on our somewhat similar configuration. However, empirical adjustment

of these factors could be used to offset any inadequacies, since the loss mechanisms
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appear to give qualitatively good results. (It might also be necessary to concentrate
one of the annuli near the shroud to produce two-phase performance deterioration.)
In the following section, we discuss this possibility of loss factor adjustment as we
use these results in the analysis of performance and design requirements.

The Fortran IV listings for this method currently include a blade coordinate subroutine

for radial-element, variable-lead blades. These listings together with other
computational details including running time estimates appear in Appendix D.
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SECTION IV

INFLUENCE OF FLUID PHENOMENA ON THE
PERFORMANCE AND DESIGN OF INDUCERS

In the foregoing sections we presented solutions of inducer flows using analytical
methods. These included a model for real fluid effects that can be changed in
accordance with experimental evidence without too much difficulty. In this section
we review the results of those and other solutions that include these effects to
determine the capabilities of our model for predicting performance and optimizing
designs. Since an inducer generally experiences some two-phase flow and losses,
we will first examine specific properties of our relations (I. 7) and (I. 13) for
describing these phenomena, (Section IV. A). Then in Section IV. B, we will
summarize our predictions of overall performance and their correlations with
recent theories for scale or fluid thermal effects. This is followed by resulting
observations about design optimization, (Section IV.C).

A. CHARACTERISTICS OF EQ_ILIBRIUM TWO-PHASE FLOW
AND LOSS MODEL

1. Two Phase Flow at Inducer Inlet

A homogeneous two-phase or single- phase flow in thermodynamic
equilibrium is implied by equations (I. 7) ‘and (1. 13). Combined with
various forms of the momentum and continuity laws, these relations
enable us to analyze situations from three-dimensional inducer motion
to one-dimensional duct flow (reference 8, p.4-54).

Of particular interest is the fluid state for vaporizing flow at the inducer
inlet. This information is required for the boundary conditions of the
analytical methods of solution, (Section IT and II). Also, if such an
upstream two-phase condition does exist, we need this to determine

the proper design blade angles at inlet. In fact, Adams (reference 32)
uses equilibrium vaporization theory to explain his test results of

lifting boiling fluid in a pump inlet line.

Accordingly, ‘equation (I. 7) and (I. 13) are used with continuity and the
streamline momentum équation for a one-dimensional analysis of the
upstream duct flow. The latter equatlon in the absolute frame is

(cf. equation L 12)

8o dp

5 =Vdv + F o ' (Iv. 1)

A special case is the essent-iallyélossleés acceleration that occurs in
a machine having a converging inlet duct. Here, the density is
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expressed in terms of the velocity as follows:

p= P / 1

B
\/ g (V2 = Vgai?) + 1
o

(IV. 2)

or in terms of the corresponding dimensionless parameters for inducers,

1 N
3‘;— =5 - \/ (IV. 3)
A
e ((2512 - Vgat?) + 1

where Vggt is the velocity at the saturated liquid condition. Note that Vggt
is zero if the inducer is sucking boiling liquid from a tank, We used this
equation to calculate the two-phase inlet densities and pressure for our
zero-NPSH runs A-6 and A-15 (table III 1).

Corresponding to(pi)are the volume ratio of vapor-to-liquid for the
mixture (—~)and the ratio of the two-phase inlet flow coefficient to that
which Wou{Jd exist for liquid at the same mass flow rate Ql/(bl’ f,
(equation 1. 7):

A% 1
() -7 o s
and
S = (IV. 5)
Vi, f le,f (P/ P

Aside from considerations of whether a given inducer can pump fluid with
a high inlet (V/L); we see from equation IV.5 that when it pumps liquid at
inlet, i.e., (V/L)1 = 0, an excessive incidence angle between liquid and
blade would result with a machine designed to handle the same mass flow
rate at such high (V/L);. To illustrate this fact, figure IV.1 shows plots
of the preceding three equations for various values of the vaporization
parameter © defined by equation (III. 36).

In all this work we must remember that the barotropic state relation (I. 7)
for two-phase motion is good only for low mixture quality x, where
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( dst 1 ) /T e . A
T (psat—p)—‘,—i_—1 (Psat - P) ——,_,L—_l—) APy (IV. 6)
P /sat Pe sat

and the dimensionless suppression pressure is

A 8o
Apy = —ﬁ_’f— (Pgat — P) (Iv.7)
We note further that the dimensionless form of the state equation (I.7) is
A 1
p= 7,"? = — (IV. 8)
1+eAp,

F0£ most cases involving this kind of flow, x is small for the minimum values
of P encountered, and this relation is an adequate representation of the
equilibrium model. For example, in liquid hydrogen at 36°F, (reference 19)

pe T* 2
2 - ( L ) - o000z =%
o &o ft2
Pe/Pg = 52.8

By selecting the values in equation IV. 8 that give minimum 3 , (and therefore

maximum x), we have

B 2
® (=—— Ut 19) =40
(go t,17)

Apv=.1

We obtain from equations (IV. 4,6, 8), using Py / Pg from reference 19

X =.077
P/Pg =.2
V/L (= @ ADy) = 4

For most fluids, T* is roughly proportional to P¢/ Pg; so, we conclude from
equation IV. 6 that this value of x is typical of that obtained for the largest
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concentrations of vapor in inducers. Since A ’;\)V is quite large, (compared
with the inducer head-rise coefficient ¥ — similarly defined in equation
III. 33), and since this example is for a high inducer inlet tip speed, viz.,
U, 1 = 447 ft/sec., our barotropic relation (I. 7) or (IV. 8) should be
applicable in most cases. (Refer to the barotropicity dicussion in

Section I. A.1).

Discussion of Losses

A good prediction of equilibrium two-phase and liquid flow within an
inducer depends on the accuracy of the factors and methods for evalu-
ating losses, as well as the equation of state. Besides blade tip leakage,
two types of loss can be distinguished, (equation I.13); viz., skin friction
or Reynolds-number-dependent losses, and diffusion or inertial losses.
For friction losses we are using an empirical relation (equation I. 14)

for smooth pipes to express the friction factor f. This loss also depends
on the local hydraulic diameter of the channel which is assumed constant
for all annuli at a given station. A correction to this is probably necessary
to account for the additional skin friction arising from the secondary flow
caused by blade-to-blade pressure differences. But secondary flow losses
might be conveniently described by an appropriate adjustment of the
diffusion loss factor.

A good diffusion description is especially important for inducers with two-
phase flow, since the sudden disappearance of vapor that can occur
probably results in a dumping of at least part of the accompanying change
in relative velocity head (references 32 and 33). This sudden diffusion
head loss, (see equation I.13), from station j to j + 1 in the inducer may
be given by

H ¢ sz ~ Vi t?

L,d P (IV-9)
where Wy, 1<Wj. Inour model we expressed § as a function of the ratio
Wij+1/Wj (equation I 15), making it possible for us to describe only a
discontinuous change of W. If the factor {is to include separation losses
that occur over some finite distance, we would need to modify this
function (equation I. 15) in one or more of the following ways: (a) limit the
number stations j; (b) increase the strength of {; (c) make { a constant that
is independent of W; or (d) make { dependent on the diffusion factor D. A
measure of the overall blade loading, (see definition on page 153 of
reference 33), the distribution of D would first need to be estimated from
a preliminary solution or one-dimensional analysis of the machine.

As a result of our inducer solutions with loss, it appears that some combi-
nation of (a), (b) and (c) would give better answers and could be easily
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included in the analysis. It is interesting to note the types of these inertial
losses that can occur and the attendant values of . For this purpose, a
more general expression of equation (I. 15) would be

W]+1
L~
£= $e+ e (IV. 10)
1-¢1 _J_+_1_
W.
J
where in our analysis we chose {; =0 and §'= -1, (see equation I 15),
and where
Hp, 4 , , [(Pj - pj+ 1)/P:|+[<Wj2 - Wj+12) /(Zgo)]
= =(incompressibly) :
(sz 'Wj+1)/(2go) (sz - Wj+12)/ (2g,)

Now, applying the momentum equation incompressibly and one-dimension-
ally with {; = 0, one obtains {' = -1 for symmetrical sudden diffusion

(no turning) - the Borda-Carnot loss, which would appear to be a minimum
sudden diffusion loss. On the other hand the largest loss would be for

§' = §= 1, which probably occurs for a flow that suddenly diffuses while
making a sharp 90° turn. (Such a turn usually causes an additional head
loss of some fraction of sz/z,g;0 due to separation and secondary flow.)
Figure IV. 2 shows the results for a variation of {' between these extremes.
Using e.g., {'=1/2 (instead of the weaker (' = -1 that we used in our

- analysis) might suffice for any discontinuous velocity change such as that
due to inlet incidence or to bubble collapse, (reference 34 and 35). {.
could be made to depend on the rate of velocity decrease with distance.
This would account for diffusion in a continuous velocity field and could
eliminate the need for the other term in equation (IV.10).

To account for tip leakage loss the complete loss equation (I. 13) might
need an additive term t} W2/2, where t; would be a function of clearance,
of blade-to-blade pressure difference and of position (as with Dh) such

that this loss is greatest in the tip region or any other region as required.
This could also account for secondary flow losses that would not be covered
by equation (IV. 10) as just discussed.

These and other modifications to the portions of the analytical programs
where losses are calculated are needed, particularly to improve our
description of the cavitation head breakdown process.

Several investigators have done work that gives insight into this head
breakdown problem. The concept of a cavity on part of the suction side

of the blade that causes a sudden diffusion loss downstream was introduced
by Stripling and Acosta (reference 34 and 35). Our model suggests the
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B.

presence of such a cavity by yielding a low density in that region (see
figures III. 21 and 22). The shock theory of Jakobsen (reference 36)
combined the cavity analysis with thermal concepts and could be used to
advantage in improving the loss descriptions in our three-dimensional
programs. Two-phase sonic velocities (reference 37) can be very low,
and the attendant mass-flow limiting process should occur, (reference 38
and reference 8, p.4-55). Our model does produce choking if a solution
at too low a NPSH is attempted, and this is discussed in the following
section, '

PERFORMANCE AND SCALE EFFECTS WITH TWO-PHASE FLOW -

1.

' Low-NPSH Tests of Inducers by the Analytical Program

We made a series of solutions with the approximate analysis program,
which includes unmodified loss relations (equations I.13, 14, 15) to
determine the net positive suction head requirements of the two sample
inducers, (figures II.12 and II.18). All these analytical runs were made
at the same values of flow coefficient (31, stated in table IIL. 1 for the
respective inducers. However two runs, A-6 and A-15, had negative
values of cavitation number k at inlet and therefore had two-phase flow
upstream of the blading. The liquid flow coefficient ¢1, f was therefore
lower than @y for these two cases only (see footnotes to table IIL 1),
both of which used ® = 10, For the other data, we conducted three series
of runs at © = 10, 40, and 1000 respectively on each inducer., In each
series we started at high NPSH, where the dimensionless form Vg is
given by

g, (NPSH) @2
= +

v T .o  _ °s
Ut, 12 P

s

1

» (¥gp 20) (IV. 11)

and we lowered ¥ gp until no solution could be obtained (choked flow), or
until ‘I’sp =0, (table III.1). Table III. 1 lists only those two-phase
solutions that were obtained for the lowest possible ¥gp,.

Figures IV. 3 and IV. 4 show the kind of pressure-rise-deterioration curves
that we obtained, starting with the value of ¥gp required to prevent
cavitation entirely and ending with the value for which no solution was
obtainable — except in the case of ©® = 10, where solutions for ¥gp =0

did exist. For comparison, actual cold water (© = 1,000, 000) test
results of a NASA 12° constant-lead inducer are also shown in figure IV. 4,
(reference 31, p.47). Even though this reference inducer is somewhat
different from our 12° machine, the results indicate that our analytical
model reasonably predicts the choked-flow or zero-performance condition,
However, our curves have sharp breaks and therefore do not yield the
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Vaporization Reynolds Flow
Parameter No. Coefficient
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A-T 10 2.5 %10 0.083 o
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ON COMPUTED MASS-AVERAGED PRESSURE RISE OF 6. 2° INDUCER.
Minimum possible values of cavitation coefficient for incompressible operation
are shown for Ap/ A;'SN c 1.
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FIGURE IV.4. EFFECTS OF CAVITATION AND VAPORIZATION PARAMETERS
ON COMPUTED MASS-AVERAGED PRESSURE RISE OF 12° INDUCER.
Minimum possible values of cavitation coeff1c1ent for incompressible
operation are shown for Ap/ApNC -1
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the gradual decay of pressure rise with decreasing ¥, evidenced by

actual tests. This means that modifications to the loss factors and the
annulus positioning as inlet, as discussed in the foregoing section, are
probably necessary to extend the two-phase regions farther into the
inducers and to describe more accurately the losses due to bubble collapse,
i.e. the sudden disappearance of these regions, as illustrated in figures
1. 23 and III. 24,

Such adjustments could also serve as a substitute for any lack of baro-
tropicity. Specifically, in the discussion of Section I. A.1 we spoke of

the rise of vapor pressure of the liquid due to losses. If such a rise

occurs before all vapor is condensed by the rising inducer pressure, the
domain and effects of the remaining vapor could be significantly increased.
A stronger friction loss factor than that of equation (I. 14) might artificially -
reproduce this by retarding the rise of inducer pressure by the slight
amount of the simulated vapor pressure change,.

Table IV.1 shows dimensional examples to which these analytical per-
formance results apply. According to our equilibrium theory, then,
liquid hydrogen can be pumped at 224 ft. per sec. inlet blade tip speed
in typical inducers at zero cavitation number. Doubling the tip speed
makes © = 40; and, as equation (IV. 8) shows, this causes more vapor at
a given pressure drop coefficient in the blading, preventing a solution at
k =0.

Theory of Fluid and Scale Effects

The complete inducer analysis that we employ to find the NPSH limits
actually contains the explicit relationship, however complicated, between
the independent dimensionless parameters, Rm, ¥sp and © that determine
the performance ¥, (expressed by the functional equation III. 32). How-
ever, we should try to discern in these and other results a simpler, under-
lying theory for these fluid and scale effects; especially the influence of
¥gp and ®, We might then be able to determine the important inducer
design factors.

Specifically we are interested in how to predict the NPSH requirements

for various fluids and sizes of a given geometry for a fixed flow coefficient
@1,f. Therefore, we require the minimum value of the NPSH parameter Vg
for which stable inducer performance is possible or for which the head
coefficient ¥ is some reasonably high percentage of the noncavitating value
¥ NC, (i.e. the value of no ¥g and © influence). If Reynolds number effects
are small compared to those of fluid vaporization, the functional equation
(ITL. 32) reduces for these purposes to

¥

(—{—) = Constant = (T) (\I/S’ min® @) (IV. 12)
NC/ REQ'D NC/ REQ'D
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TABLE IV.1
DIMENSIONAL EXAMPLES OF SAMPLE INDUCERS

For inducers having same geometry as in Figure I1.12 of II. 18

Dimensionless
Parameters of Consistent Set of Dimensional Conditions
Solution to Which Solution Applies
Machine Liquid Inlet
Vaporization Reynolds and Tip Rotative Blade Tip Speed
Parameter Number Temp. Dia.* _Speed* at Inlet
C R D¢ 1 N Ut, 1
— m {Inches) (rpm) (ft/ sec,)
10 2.5x% 107 Hydrogen  5.37 9, 550 224
@ 36°R
40 5.0 x 107 Hydrogen 5. 37 19, 100 447
@ 36°R
1000 2.5 107 Water 6.00 9,550 250
@ 267°F
*NOTE: The only parameter that is directly connected with the inlet diameter

D . or the speed N is the machine Reynolds number. For the usual

rahge of sizes, Ry, appears to have a small effect; so, the important

limitation for equilibrium two-phase flow is not D or N, but their
, t,1

product, the tip speed

= =7
Upq= 95 =D N

which is connected with the cavitation and vaporization parameters;
(see Table III 1).
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or

¥s, min = ¥s, min (@) (IV. 13)

Because ¢1 ¢ is fixed in this problem, we could substitute either kmin
or Smax for ¥g _min’ where dimensionless relations between them (see
equations III. 34 35, 37, 38 and IV.11) are

2 Vg
k= —2 (IV. 14)
1+ @y ¢

and

e
N@ ¢1,f Trg 12

a1 72 (IV. 15)
(g, NPSH) 2/ (¥g)

S

il
I

When applied to axial inducer inlets where Ay = 7ry 12 1 - 512), this
general form for the suction specific speed becomes

@,f (1 - £1%)

2 Y7 (¥ g3/

(IV. 16)

Thus we are looking for the following function, (equivalent to equation
IV.13):

Smax = Smax (®)¢1’ ; (IV. 17)
or, dimensionally:
NPSHmin = NPSHmin (B)Qf (IV. 18)

Investigators have found empirical correlations that tend to support the
validity of the equilibrium equation (IV.18). Stahl and Stepanoff (reference
13 and 14) first proposed a remarkably simple theory for that relationship,
also presenting their results. The basis of this theory is that the breakdown
of head rise under cavitating conditions is caused by a performance average
vapor-to-liquid volume ratio (V/L)p. Salemann's observations (reference 17)
lend more support to this idea; and so does the work of Spraker, who also
defines the thermodynamic constant (B = P¢T*) so that the relative vapori-
zation characteristics of various fluids can be easily identified. For
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example, figure IV.5 shows the variation with temperature of the
equilibrium thermodynamic vaporization constant B _ PET"  for water.
Values for some other liquids are shown, Bo 8o

indicating the temperatures at which water has similar vaporization
properties. The parameter (V/ D)p, which connects B and NPSHmin
varies with geometry and flow coefficient. Our model uses T* in the
detailed flow calculations, but (V/ L)p is an average that must be found
empirically. We can attempt this with the performance results of our
analytical solutions as with test data.

Figure IV. 6 illustrates the usual empirical method of finding the
constant (V/L)p, which is assumed to exist when sufficient choking
occurs to cause the inducer pressure-rise Ap to deteriorate appreciably
from its cogresponging non-cavitating value A'I:TNC. We make the evalu-
ation when ¥p = AD  yeaches the minimum critical value that still
insures reliable, PNC stable operation of the machine. This need not
be interpreted as requiring uniform @p in all cases — even with the
same geometry and flow coefficient; although equation (IV. 12) and

figure IV. 6 conveniently show it that way. TSH is the difference between
the values of NPSHpin for fluids having respectively infinite and finite
values of B.

The physical significance of B can be seen from its effect on V/L
through equations 1.7, 8 and IV. 4. Infinite B leads to infinite vapor
volume (for any depression of static pressure below vapor pressure)
and the essentially direct effect that V/L has on head breakdown.
Accordingly, zero B means that vaporization produces no effect on
performance.

The theory that connects NPSHy,in and B can now be stated emplicitly
by referring to equation (IV.4) which defines V/L:

(s

(NPSH . p_po- NPSH ; p)= 5 (IV. 19)
where Ba= is approximated, e.g., by cold water, (figure IV.5). This
is the explicit relation suggested by equation (IV. 18), and it can be
similarly written as
o)
TSH= /B (IV. 20)

B
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or dimensionlessly as

),

(¥s, min, O+ Ws,min,e) - (IV. 21)

In terms of S this becomes, (noting equation IV.17, and using equation
IV.16).

3 o= Smax, Q —»»
me O T e S e) (L |

(IV. 22)

Analysis of Results

Our analytical tests of two inducers for NPSH,;, can be empirically
examined using of these equivalent relations, say equation (IV. 22). We
have three data points at constant ¢1,f (table IIL 1) for each inducer, viz.
runs A-7, 8, 9 and A-16, 17, 18 respectively; but only the latter two
points of each set yielded flows sufficiently close to choking for us to be
able to say that Smax existed, (see figures IV.3 and IV. 4). Taking the
corresponding values of Sy ax and © of these two points, we solved the

two resulting equations (IV.22) for (¥} and Sy5%x @ o for each
L ’

geometry. Furthermore, the type of fluid that yields infinite suction
specific speed is now related to the latter (cold water) Smax:

- 1-¢£1)

If this value of (—%) D does produce similar head-rise performance for

all ©, we may plot Smax versus © using equation (IV. 22). Figure Iv. 7
shows the results.

Whether similar analytical, critical performance points for other values

of ® would lie on the appropriate curves of figure IV.7 remains to be
proven. Even though runs A-7 and A-16 had less-than-critical cavitating
head-rise deterioration, (see figures III. 21 to 24 and IV. 3, 4), they are
shown there for reference only. Observe that Spmax, @+ (cold water
Smax) is considerably greater than that for which two-phase activity

begins (as shown in figures IV. 3, 4), since inducers and pumps are always
cavitating when performing at Smax conditions. Also © = 1000 gives nearly
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the same Sy3x as at ® - ». Finally, the 12° inducer has the greater

(v/ L)p capability, which could be attributed to the larger amount of the
inlet fluid relative incidence i not compensated by blade thickness. Note
that computations were made for faired blades, (figures II.12, 18), which
in both inducers would have taken 0, 64° of the incidence had full thickness
existed at inlet; i.e., all incidence in excess of this blockage amount then
causes leading edge blade loading and the attendant flow adjustments to the
internal two-phase activity.

A well-known experimental fact, the evident (V/L)p capability of this blade
fairing is illustrated by the two-phase no-loss run E-9 of the exact
analysis method (table II, 1), Here, the presently unadjusted upstream
stagnation stream surfaces are set at the relative flow angle (i = 0), and
the light load taken by them — as they now act like faired blades — nearly
eliminates two-phase activity within the blading itself, (figures II. 28 and
29). This "additional blading'" enabled us to obtain that solution with a
lower NPSH (¥ gp = 0 at © = 40) than was possible by the approximate
method, which produced loading only on the actual blading.

To the extent that the preceding correlations and the experimental data
of references 13, 14, 17, 18 support the (V/L)p theory as the connection
between S and ©, we can propose a concluding theory about two-phase
activity within inducers. The observation that two-phase flow exists

at a much higher value of NPSH than the critical one suggests that two
fairly distinct flow regimes exist over the NPSH range:

a) For the range

NPSH incompressible > NPSH Z NPSH
flow

enough vapor forms to unload the inducer blades at inlet by an amount
compatible with the NPSH, This prevents the far greater volume of
vapor that would have choked the passage had the blade suction-side
pressure-drop not been reduced by the unloading (see figures III. 21 and
22). The extent of and density distribution of the vaporous region vary
with NPSH; but performance is affected only slightly, because the losses
associated with these redistributions of load near the leading edge are
small, Thus there are no © effects over this NPSH range, (figure IV.7).

min, @ > «

b) In the range

NPSH = NPSH > NPSH

min, © - o min, ©

the passage isin the process of choking due to the formation of vapor
which is in excess of that required to satisfactorily unload the blades.
In contrast with regime (a), the flow in the leading portion of the inducer
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is essentially one-dimensional. The additional V/L formation with
diminishing NPSH is more nearly uniform across the passage and

is the only V/L contributing to (V/ L)p Thus the extent of this NPSH
range depends on © (equation IV.21); and when (V/ L)p is reached, the
passage is sufficiently choked to produce the critical performance at
NPSHmin. :

Every geometry and flow-coefficient combination has the capability of
handling a specific amount of this excess vapor (V/L). The results in
figure IV. 7 suggest that (V/ L)p may be more or less directly dependent
on the amount of available mmdence in excess of that required for
blade blockage. Thus if i = 3° or 4° total, a typical inducer might be
capable of (V/ L)p 0.5. The resulting plot of equation (IV.22) using
Smax, @+ o =2, (=2 x 17,180 = 34, 360 in "rpm-gpm-ft" units),
is shown in figure IV.7. A similar curve for typical centrifugal pumps
- is also shown using Sy ax  @-=w= 1/2 (or 8,590). Higher incidence
probably leads to more vapor due to excessive loading; therefore, no
further gain of (V/ L)p results. Observe that if © is large, the magm—
tude of (V/L)p is of no consequence, since negligible NPSH reduction
is possible in the regime (b), (equation IV.21). In this case (typical
for cold water) regime (a) exists over the entire NPSH range, and
regime (b) exists virtually at the point NPSHy, i, only.

This theory may work empirically in the thermodynamic non-equilibrium
case, provided the resulting time delay or other effects are uniform,
There is no assurance that even this is true in all cases. For example,
the work by Sandercock et al (reference 39) shows some improvement in
performance with a © increase. However © was very high (cold water),

so that in view of the foregoing discussion it should have no influence.
Also, their results could be partly a Reynolds number effect. Ruggeri

and Gelder have shown that considerable local departures from equilibrium
are possible, (references 16, 40, 41); and Holl and Treaster have reported
work in this area, (reference 42). The sudden diffusion due to incidence,
other turbulent conditions, and a_fairly one-dimensional two- -phase motion
might reduce these departures to some umformly minimum value for in-
ducers. If a correlation with the constant (V/L)p theory is then still
possible, corresponding empirical corrections to the analytical flow model
might also be possible, (section IV. A.2).

C. OPTIMIZATION OF GEOMETRY

The foregoing analysis of performance results indicates that certain important features
of inducer design should be optimized with the help of the analytical programs that

are available (Appendixes C and D). As observed from the data accumulated in this
work, we now discuss these design features:
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a)

b)

c)

Head coefficient ¥

If the loading is maintained light (equation IV. 24) the head coefficient in
a reasonable length will not be great. However, attention to maximum
possible deceleration criteria and diffusion factors are necessary to
prevent loss of control of the flow, (reference 33). In the interest of
restricting vapor cavities to narrow regions, relative velocity diffusion
should probably be minimized while keeping losses to a minimum,

Inlet tip blade angle, 8b,t,1

Feature (c) should lead to low blade angles throughout the inducer which
are shown to be necessary in other optimizations (references 7, 34 and 35).
Even with light loads, low B8's are necessary. This is probably because
the incidence at high blade angles for reasonable leading edge loadings is
not sufficient to avoid the choking problem; i.e., i/Bflow iS probably
closely related (V/ L)p for low angles. However, two problems arise if
B is too low; viz., higher losses due to the low hydraulic diameter of
the resulting passage cross section, and a higher © with the consequent
NPSH difficulties. This latter problem arises for a given fluid, mass
flow rate and rotative speed, because a lower blade angle requires a
higher inlet diameter and tip speed.

Incidence i

This difference between the blade and relative flow angle should be greater

than that required to compensate for blade blockage. The amount of incidence

should be sufficient to avoid choking the passage by vapor formation at too
high a value of NPSH. Too high an incidence is undesirable because of the
back flow and instability that develops especially at high NPSH, and because
of vapor formation arising from the attendant loading.

Solidity o, or length m.

A large solidity or inducer length is necessary to contain the two-phase
fluid in the front or leading portion of the machine. Liquid is required
at exit in order to obtain the pressure rise. Also, the blade loading
must be very light to prevent excessive vapor generation by reduced
pressure on the suction sides of the blades. The moment of momentum
relation shows both these points when expressed in the following form:

w d Hj
ny rQb dm

Pp -~ Pg =

where the ideal head Hj = UVg/ g, and b is the blade height of the passage
in which mass flow rate w exists.
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The computer programs for analyzing the three-dimensional flow field are probably
necessary to optimize these features successfully where two-phase flow with losses
is involved. The primary object of a design so evaluated is to avoid the choking
phenomenon as uniformly as possible in all sections of the inducer. The exact three-
dimensional method has the capability of analyzing thermodynamic non-equilibrium
cases with the appropriate changes in the loss and density expressions. If acceptable,
the approximate method would be more easily adapted to this problem simply by
empirical corrections to the equilibrium loss factors. .
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CONCLUSIONS

We have obtained solutions to the set of simultaneous differential equations and

boundary conditions required for a general continuum description of single and two-
phase three-dimensional flow with losses in turbo-pump inducers. Because of this
generality, both the exact and approximate methods of solution that we developed are
also applicable to other turbomachines. Although we used a thermodynamic equilibrium
model with empirical loss factors to account for the two-phase and loss effects, this
feature of the analysis is purposely subject to change without destroying the basic system
of equations or mathematical iterations.

The exact three-dimensional method of solution successfully employed the total residual
relaxation concept for the simultaneous finite difference solution of four non-linear
differential equations and the attendant boundary conditions and additional fluid equations.
We obtained results for nine runs without losses, and the concluding remarks at the end
of Section II contain observations of the numerical and fluid dynamic phenomena in each
run. Together, these empirically demonstrate the validity of the method. The first five
runs were special cases for which known answers were available. These runs, which
described both liquid and two-phase axial flow through paddle-wheel channels demonstrate
that the relaxation procedure converges with good results. They also show that a large
number of finite difference field points gives more accurate answers.

Of the four runs on the sample 6. 2° and 12° variable-lead inducers, all were for in-
compressible flow except one on the 12° machine. This one revealed that the inclusion
of these two-phase effects required a negligible increase in computing time. One
incompressible run on each inducer gave reasonable overall performance results even
with the coarse, highly non-orthogonal grid that we used for these low-angle channels.
The more detailed internal distributions differed from those obtained by simple radial
equilibrium techniques, but were qualitatively reasonable., The distributions resulting
for the one special run with pressures forced to satisfy the streamline momentum equation
for no loss were more familiar. This showed that reasonably accurate results are
possible with a grid that is too coarse for the relaxation procedure to produce low enough
residuals to guarantee them., The initial positions of the upstream and downstream
stagnation stream surfaces were not changed as the progress of the solutions indicated
that some load existed on these extensions of the blades. However, as one compares
the differences in these runs, the inaccuracies of the coarse grid (e.g. 5 x 5 x 22) that
we used (for reasonable computer running time) appear to have had more effect on the
answers. We have presented detailed recommendations at the end of Section II that
contemplate satisfactorily accurate three-dimensional answers for lossless flow in
typical inducers with a 10 x 10 x 50 grid, about twelve hours on good computing equip-
ment, and appropriate hand adjustment of the blade extensions. ILosses are easily
included and may require a finer grid and more time.

The approximate method of solution was more rapid, but it employed assumptions that
amount to combining two quasi-two-dimensional solutions to get answers in three
dimensions. However, it is a step forward because it does combine these solutions
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with two-phase flow and loss effects. The method of solution by balancing initially-
assumed streamline positions makes it possible to get satisfactory answers for a
very small number of these streamlines. Results of over eighteen runs demonstrate
the capability of this method as a rapid way of judging or grading an inducer; e. g.,
by the results of several runs at various inlet conditions. This would determine if
and at what condition a particular inducer should be analyzed further by the more
detailed and lengthy exact method. About half of these approximate runs contained
two-phase flow with losses., The others were incompressible runs with and without
losses. This data clearly describes blade leading edge unloading that occurs for
cavitating conditions (low NPSH). In fact, several resulting inducer pressure-rise-
versus-NPSH curves at different values of vaporization parameter show that our model
for these real fluid effects qualitatively produces the familiar head breakdown curve.
Stronger loss factors appear to be necessary to reproduce the shape of this curve
more exactly; although "choked" or minimum NPSH conditions for complete head
breakdown correlate reasonably with test results, The basic restrictions of our
approximate method may be partly responsible for this lack of complete correlation.

These results include the fluid and scale effects of the cavitation and thermodynamic
vaporization parameters that are part of the analysis model. However, further study
shows that this data has some correlation with the well-known, simplified, vapor-to-
liquid volume ratio theory for minimum allowable inducer NPSH. The fact that two-
phase motion exists with negligible inducer performance effects over a wide range of
higher values of NPSH indicates that two cavitating regimes exist over the NPSH
range, viz., "unloading' and "choking". The simplified theory probably predicts these
fluid and scale effects as well as it does by being of importance in only the choking
regime, which causes complete head breakdown regardless of non-cavitating pressure
rise.

This theory and data indicate that inducer design optimization with these analysis
methods can be done by examining different designs for the effects of (a) head coefficient,
(b) inlet blade angle, (c) inlet incidence angle, and (d) blade solidity. Empirical modi-
fications to the programs appear to be necessary to improve the existing thermodynamic
equilibrium model for two-phase flow and loss effects. This may be sufficient to
describe the non-equilibrium phenomena if they are not separately distinguishable in

the experimental test results that would be used for the purpose. Fortran IV listings

of both the exact and approximate analyses are included in this report, and the programs
are ready for further use,
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APPENDIX A

TRANSFORMATION FROM CYLINDRICAL
TO GENERAL, OBLIQUE COORDINATES

The desirability of a natural coordinate system for which the boundaries of the flow
channel become coordinate surfaces was mentioned in Sections II. A.1 and II. B. 3,

Such a transformation is described in this appendix and the wall boundary condition
(equation I. 16)) is stated in terms of these natural coordinates. We start by designating
the hub and shroud as surfaces of constant « , the blade surfaces as surfaces of
constant 8, and the inlet and exit throughflow surfaces of the channel as surfaces of
constantY (see figure A.1). Knowing the cylindrical-coordinate description of the
physical boundaries of the flow channel, a transformation is induced between the
cylindrical coordinates (r, 9, z) and the family of ¥-surfaces (hub to shroud),

B -surfaces (blade-to-blade) and 7Y-surfaces (inlet-to-outlet) as follows:

r=r (a,8,7)
0=0 (a)8,7) (A1)

z2 =2 (a, B,'Y)

This transformation has a Jacobian matrix denoted by

[~ ar 99 9z |
Ja  Juo E)e!
ar 96 dz
r,0,%
3 (-—> _| 9% °F B
a, 8,7 ar 26 9z (A. 2)
LY 9y 97 _

We now apply the "chain rule" (reference 43) and rewrite all the partial derivatives
which appear in equations (II. 1) through (II. 4) in terms of the natural coordinates so
that

3 _ da 8 . 8B 8, Y 3

ar dr Oda ar 98 ér 97

9 _ 9a 9 8 3 , 3r 2
36 ~ 96 o 36 9B ~ 98 a7 (A. 3)

9 _9a 9 , 88 d_ , dr 9

g dz Jda de 9B 9z 9Y
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Using the notation of equation (A.2), we see that the nine coefficients in equations
(A.3) are the elements of the Jacobian matrix

[~ da 388 _97]

dr Jdr 4r
J a é y Y — da aﬁ aY (A. 4)

r,0,z d9 96 99
da 38 9Y

L dz Jdz J =

J (L 8,8
which is the matrix inverse of (a, 8 ,‘)') (reference 44), Therefore, the nine coefficients

needed for the evaluation of jir’ ’g@ and 6% are calculable from

da _ (69 dz 96 az>

b
|

ar 38 37 3y 98/ D

o8 _ (96 9=z 96 9Jsz ) 1

dr \dY da  da o9v/ D

Y _ 08 0z 46 9% 1

ar "(aa 06 B aa) D

da _ [ 9B 9r ds 9r ) 1

ae“(aﬁ 3y 9 88/ D

g _ (az ar 9% adr 1

96 \9Y 92 ~ Ja a'r) D ¢ (A. 5)
9y _ [9& Or 3z ar> 1

36 \da 9B 98 9a/ D

da _ < or 99 or ae) 1

gz \ 9B a9 93 o8/ D

98 _ ( dr 98 or 99 1

az‘(av da Qo av)B

Y _ Jr 4o ar 9o 1

s “( g 38 9B aa> D |

. r,8,z\ . .
where the determinant of J (ﬁ) is given by
n (A. 6)

da \98 37 ~3Y 9B’/ 9B \37da " 3a a7

_ar /36 97 d0 9Jg or /06 dz 036 02 . or 99 9z 06 az)
v (

The main analysis program, described in Appendix C, uses formulae (A. 3) for calcu-
lating all the partial derivatives of the variables appearing in the residuals as given by
equations (II. 5) through (II. 8). The necessary transformation coefficients are calculated
by a subroutine from the (r, 8, z)-coordinates of the grid points using formulae (A.5)
and (A. 6).

For a typical inducer channel the degree of obliqueness of the (a, 8, ¥)-system is
largely due to the blade angle. For example, at the blade leading edge of the 6. 2°
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inducer channel, with which run E-6 was made, a typical "star" of grid points is
highly oblique because of the shallow blade angle. Figure A, 2 shows such a star near
the blade leading edge at the root-mean-square radius of r = 0. 7454 where the blade
angle is 8.4° (see equation (II.40)). In the interior of the channel, where Az is 0, 23524
instead of 0.10857, the distance AY is even greater relative to the distances Aa = Ar
and A 8 = rAe.

This situation may be alleviated by taking the ¥ -surfaces to be quasi-orthogonal to the
blade surfaces rather than perpendicular to the 8-axis. One drawback this has is that
many more ¥ -stations are required. Also, if the grid points do not lie on planes of
constant z, the determination of blade loadings and of throughflow boundary conditions
is rather difficult. A simpler remedy is to form a denser grid of points although this
increases computer time per relaxation cycle. We again point to the quality of our
results in Section II. B and recommend that for any particular channel geometry a
reasonable grid be selected based on qualitative diagrams similar to figure A, 2.

The treatment of the wall boundary condition
W.H =0 (1. 16)

is as follows:

At a point on a blade we can let the normal vector, T, be V8 because the blades are
surfaces of constant 8. Thus

W.T=W. vB=0

or s v 98 98 _
Uar TT 9 " Vs 0 (A. )

Similarly, since the hub and shroud are surfaces of constant «, a normal vector at
such a point is V « and we have

Ja vV  da Jda
—— e — — —
u ar r de v 0z 0
da _
Since the hub and shroud are surfaces of revolution, i.e, 39 ’ on a hub or shroud
point the condition is
u da |, da _ (A. 8)

or 0z

At an "edge" point, i.e. where a blade meets the hub or shroud, equations (A.7) and
(A. 8) must be satisfied simultaneously.
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In the computer program in its present form (see Appendix C) equations (A.7) and
(A. 8) are respectively solved for w and u, i.e.

oy 98, Y 98 /_aé

W (u or T 69> 0z (A.9)
- _ da [ _da

u=-w— 3y (A. 10)

Thus, on a blade surface w is explicitly dependent on u and v. On the hub or shroud u

is directly determined by W. This is because, for the blade angles we have been
considering, the dominant coefficients are 98/ 9z and da/ dr. In fact, equations
(A.9) and (A. 10) may be used successfully for blade angles and hub and shroud slopes

of up to 60° to 70°. This method is used merely for convenience of programming —
every grid point has four residuals associated with it. To make the program completely
general with respect to channel geometry, equations (A.7) and (A. 8) can be treated

as "boundary condition residuals', in which case there would be five residuals at
boundary points instead of the usual four (see Section II. C. 2).

Finally, the (a, 8,7 ) -surfaces need not be uniformly spaced as concerns the validity
of the transformation formulae. Thus, with a proper choice of these surfaces the grid
can be made denser in the boundary regions relative to the interior of the flow channel,
thereby achieving greater accuracy close to the boundaries where the discretization
discrepancy is the greatest (see Section Il A. 5).
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APPENDIX B
COMPLEMENTARY STREAM FUNCTIONS

In this appendix are discussed the development and applications of a pair of comple-
mentary stream functions to the solution of the three-dimensional fluid flow problem,
as outlined in Section I. The advantages and disadvantages are weighed against each
other and it is concluded that, although the approach is aesthetically appealing, much
more development is required before it can be applied as a practical solution method.

Observe that a vector can always be represented as lying along the intersection of two
nonparallel planes (which are not necessarily orthogonal to each other). Specifically,
we can represent the relative velocity vector, W, at a point as lying along the inter-
section of two planes, each of which is tangent to one of a pair of surfaces at that
point, Designating two such families of intersecting surfaces as

p (r, 8, 2) = constant

(B. 1)
o (r, 8, 8) = constant
yields (see figure B.1)
W=AVuxve (B. 2)

Here A is some proportionality function whose nature can be determined by satisfying
the continuity equation as follows:

V. W= Vi (VuxVe)* AV . (VuxVe)
= VA. (VuxVo)
= VA WA =0

i.e. A is constant along streamlines., Therefore A is a function of y and A only and,
hence, no generality is lost by taking A as unity, or

W= vuxve (B. 3)

No rigorous treatment of the conditions under which such families of surfaces exist

is given here. Maeder and Wood (reference 11) simply assume their existence whereas
Yih (reference 10) derives them as solutions to the differential equations which describe
streamlines. Additional justification for taking A as unity is given by Yih as well as by
Benton (reference 45).
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FIGURE B.1. PORTION OF A STREAMLINE SHOWN AS THE CURVE OF
INTERSECTION OF A PAIR OF STREAM SURFACES.
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For the case of a compressible (or two-phase) fluid, the above development is repeated
with the flux vector, PW, to obtain

Wz% VuxVe (B. 4)

One immediate advantage of this transformation is that the continuity equation is
satisfied identically because of

V. (p W)= V. (VuxVg)=0

which is a vector identity. Also, the three velocity components are now expressed in
terms of two functions. Thus the problem is reduced to solving the resulting three
momentum partial differential equations for p, ¢ and o.

Another advantage is the ease with which the wall boundary conditions are met. If a
portion of a wall boundary is considered as a surface of constant ¢, for example,
then a normal vector to this surface is given byVe. Thus

-\7\7-}?=—;—- VUXV o =0 (B. 5)

which is again a vector identity. Placing pu or ¢ surfaces on the boundaries, therefore
automatically satisfies the wall boundary condition. This is consistent with the
geometric interpretation of the u and ¢ surfaces as stream surfaces. With this in
mind, we tried two systems of arranging these surfaces in the flow channel.

In the first system, the hub and shroud are ¢ -surfaces and the blades are p -surfaces
(figure B. 2a). It is shown in reference 10 that the total mass-flux across an area
bounded by two pairs of surfaces suchas ¢= 01, ¢ = 62, u=pu1, and p = u2 is given
by

w=(ug -p1) (o2- 1) (B. 6)

Thus, making the hub be a surface ¢= 0, the shroud ¢=wT and the blades u = 0 and

p =1.0, satisfied mass-conservation in the large. This "natural" way of arranging
the stream surfaces does, however, prevent a streamline from crossing from a blade
onto the shroud, say; i.e. the "edges" of the channel are forced to be streamlines
themselves., How much of a drawback this is is not clear because the streamlines a
finite distance away from the boundaries can still produce the counterrotation observed
in typical inducer flows. On the one hand it is easy to show that a streamline which
touches an edge must at least be tangent to it at the point of contact. On the other hand,
in two-dimensional potential flow near a corner, fluid particles on the boundary do go
around the corner if the corner angle is obtuse*, We also foresaw possible numerical

* This example was brought to our attention by Doug Anderson of the Lewis Research
Center, NASA, Cleveland.
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difficulties due to the "bunching" of stream surfaces near the boundaries resulting
from the relative rotation of the fluid in the passage.

For these reasons we decided to try another system of steam surfaces (figure B. 2b).
In this system the entire channel boundary is made a ¢ -surface of value o = q, with
other o-surfaces nested inside. The p -surfaces radiate from the surface ¢=0

(this degenerate surface is actually a curve) so that a typical cross section resembles
a spider web, With this system the question of streamlines moving across the edges
of the channel is immaterial, One very serious drawback is the singularity which
exists about the curve =0, We were unable to surmount the numerical problems
associated with this singularity in any practical way. A lesser disadvantage is the
discontinuity due to the coinciding of the surfaces p = 0 and p = 1.0, similar to the
discontinuity which is present in an ordinary polar coordinate system where the rays

0 = 0 and 6 = 27 coincide. By use of a special algorithm which permitted the u -surfaces
in the vicinity of this apparent discontinuity to be two-valued, we were able to compute
i —derivates in the usual fashion.

The form of the governing equations is independent of which system of stream surfaces
is used. When the transformation (B. 4) is applied to the vector momentum equation
(I, 4) the result is

d d 1 de
govp+VHX'at—V0' - Vo X 'at— VM'T (V“XVU)T

+2—5x(Vu XVo) +p U x (RxT) + #F (B.7)

The three scalar components of this equation can also be obtained from equations (II. 1),
(I1. 2) and II 3) by substituting into them

wo L (9K 90 _ 90 ou
TP 98 OJdz 08 9=z

_ 1 Ak 9o _ 80 9y
v p (az or ¥ ar)

(B. 8)

_ 1 o 9o _ dg IH
W= (v 36 ~ “or 98

which are merely the components of equation (B. 4).

The resulting scalar equations contain pure as well as mixed second order partial
derivatives of u and o. The typical star of grid points for the corresponding finite-
difference equations would contain 19 points instead of the seven points we are now
using (figure II 2). The drawbacks of this are apparent,
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a) "Quasi-Orthogonal' System

b) '"Spider Web'" System

FIGURE B.2. TWO ARRANGEMENTS OF pu- and ¢-SURFACES

159



We felt that the above-mentioned difficulties made the use of these complementary
stream functions an impractical approach at the present, compared to the direct
numerical solution of the untransformed equations as presented in this report. We
recommend, however, that the use of these (u, ¢) -surfaces be investigated further,
because, with the use of differential geometry, they may lead to a rigorous analysis of

the throughflow boundary conditions needed for the general three-dimensional problem
in turbomachinery.
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APPENDIX C

INSTRUCTIONS FOR USE OF
EXACT SOLUTION COMPUTER PROGRAMS

The main analysis program for the exact solution method (see Section IL A. 3) and
the accompanying data reduction program (see Section II. A. 6) are described in this
Appendix. Both programs are written in Fortran IV. Their inputs and outputs

are described, followed by their respective Fortran listings. In the case of the main
program a block diagram is included.

a) Main Analysis Program

The main program and its five subroutines have a common storage requirement of
39, 638 locations, The running time per relaxation cycle can be estimated as in the
following example:

For a 5 x 5 x 22 grid there are 1585 independent discrete variables (see
equation (II.14)). For M=3, a maximum of six values of R* will have to
be calculated for each of these variables (see Section II. A. 3) making a
maximum of 9510 star residuals to be computed during one relaxation
cycle. A UNIVAC 1107 can calculate approximately 40 star residuals per
second, this having been established experimentally. Thus it would take
at most 238 seconds, or four minutes for each relaxation cycle.

The input to the program consists of the cylindrical (r, @, z) -coordinates of the
selected grid points, certain numbers which control the nature of the relaxation
processs, information describing the fluid, and initial values for the field of velocity
components and pressures. A definition of these input quantities follows. For the
exact format in which these inputs are to be given, please see the corresponding
Fortran listing.

IMAX, JMAX, The number of radial (hub-to-shroud), circumferential (blade-
KMAX: to-blade) and throughflow (upstream-to-downstream) grid stations,
respectively. I=1 on the hub and I = IMAX on the shroud; J =1
on the pressure (driving) blade surface and J = JMAX on the suction
(driven) blade surface; K = 1 on the upstream throughflow boundary
and K = KMAX on the downstream one,

KLE, KTE: The K-index of the axial stations corresponding, respectively, to
the blade leading and trailing edges.

R, J, K): The radial coordinates, r, or the grid points.

T(I, J, K): The circumferential coordinates, 8 (in radians), of the grid points.
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Z(1, J, K):

TITLE:

KOUNT:

NUM:

NSEQ(1),
NSEQ(2),
NSEQ(3),
NSEQ(4):

DMAX(1),
DMAX(2),
DMAX(3),
DMAX(4):

A:

CRIT:

E:

REV, DLIQ,

PSAT, TT,
VISC:

U, J, K):
v, J, K):
w(, J, K):

P, J, K):

The axial coordinates, 2, of the grid points.

Any type of run identifying information which may consist of up to
80 characters (including blank spaces). None of this information
is processed by the computer.

The number of the first cycle of the current run (for "book-keeping"
reasons only).

The number of relaxation cycles to be executed by the current run.
If NUM = 0, no relaxation is performed: All residuals and the
overall RMS value are computed and the regular output is presented.

The number of adjustment magnitudes to be tried with each variable
(see Section II. A, 3). Recommended: M = 3,

The sequential order in which the four variables are to be adjusted

at each grid point where the four variables are identified by the
computer as follows: uis 1, vis 2, wis 3 and p is 4. Thus, for the
recommended sequence (see the discussion following Run E-6 in
Section IL. B. 3), NSEQ(1) = 4, NSEQ(2) = 3, NSEQ(3) = 2, NSEQ(4) =1,
resulting in an adjustment of sequence of (p, w, v, u).

The four starting trial adjustment magnitudes du, §v, sw, sp,
respectively (see Section II. A. 3). Recommended: DMAX(1) =
DMAX(2) = DMAX(3) = DMAX(4) = 0. 1.

The successive adjustment ratio, (see Section I A, 3).

Recommended: a =0.1

The accuracy criterion, such as the quantity Q2r 1 of equation (II. 19).

t,

The convergence parameter, ¢, of equation (II. 19).

The values of rotative speed, @, liquid density, p¢/ 8o saturation

" pressure at, vaporization constant, T*, and kinematic viscosit
’ S Yy,

v , respectively,

The values of radial velocity, u, at each grid point.

The values of relative circumferential velocity, v, at each grid point.
The values of axial velocity, w, at each grid point.

The values of static pressure, p, at each grid point.

This completes the list of input quantities.
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The output of the program consists of punched and printed output.

After executing

NUM relaxation cycles the entire list of quantities, starting with TITLE, is punched
onto cards in exactly the same format and order as for the corresponding inputs.

The values of NUM, DMAX(1), DMAX(2), DMAX(3), DMAX(4), U({, J, K), V({d, J, K),
WwW(I, J, K) and P(I, J, K) are the latest values.

Thus the punched output of one run

may be used to continue the same run at a later time without having to rerun the
relaxation cycles of the first run.

The first line of the printed output consists of the entire contents of TITLE, thereby

providing any desired way of identifying the computer run.

The size of grid is

identified next, followed by the values of M, a, Q,Pf/go, Psat, T*and v. Then the

sequence in which the variables are adjusted, is stated.

The next portion of the

printed output concerns the cycle-by-cycle progress of the relaxation scheme, It
is printed in columns with the following headings:

RELAX
CYCLE:

NO. OF
TRIES:

TOTAL RMS
RESIDUAL:

MAX, RMS
RESIDUAL:

MIN. RMS
RESIDUAL:

MAGNITUDE
OF BIGGEST
ACCEPTED

ADJUSTMENT
FOR U, V,W, P:

The sequential number of each relaxation cycle, the first cycle
of the current run having the number KOUNT as given in the
input. : : .

The total number of trial adjustments that were made during each
cycle. Note that this number cannot exceed 2 x M x D, where D is
given by equation (II.14).

The root-mean-square value of all residuals in the entire grid
of points.

The largest root-mean-square value of the four point residuals
as given by equations (II. 5) through (II. 8).

The smallest root-mean-square value of the four point residuals

as given by equations (II. 5) through (II. 8).

The magnitudes of the largest adjustments éu, év, éw and dp which
were accepted during each cycle,

The last portion of the output presents the latest values of the variables at all grid

points,

I, J, K

This information is printed in columns with the following headings:

The three indexes of each grid point. Recall that I =1 on the hub
and I = IMAX on the shroud; J = 1 on the pressure (driving) blade
surface and J=JMAX on the suction (driven) blade surface; K=1
on the upstream throughflow boundary and K = KMAX on the
downstream throughflow boundary.
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U: The radial velocity component, u.

V: The relative circumferential velocity component, v.

W: The axial velocity component, w.

P: The static pressure, p.

D: The point density, # /g,.

RES: The sum of the squares of the four point residuals, as given

by equations (IL 5) through (IL 8).

The program will continue until either the largest root-mean-square of the four point
residuals is less than CRIT times E (see equation II.19) or until NUM relaxation
cycles have been executed. Accordingly, the message "CONVERGED" or "MAXIMUM
NUMBER OF CYCLES EXECUTED" will be printed on the output sheet. In either case,
the computer will stop with an input tape end-of-file condition.

b) Data Reduction Program

The Data Reduction Program and its two subroutines have a common storage require-
ment of 23,757 locations. A UNIVAC 1107 requires between 25 and 30 seconds to
reduce the data of a 5 x 5 x 22 grid.

The input to the Data Reduction Program is identical to the input to the Main Analysis
Program. Thus, the input describing the grid point coordinates can be combined with
the punched output of any given run of the Main Analysis Program to form a complete
input set for the Data Reduction Program.

The first line of the output consists of the entire contents of TITLE, thereby giving
the reduced data exactly the same identification as the corresponding main analysis
run. The second line identifies the number of the relaxation cycle whose results are
being reduced. Next, a station-by-station listing is given of hub-to-tip distributions
of quantities which are area-averaged over annular regions on each axial station. The
column headings are:

AXIAL The & -value of each station. The stations corresponding to the

STATION: blade leading edge (K = KLE) and trailing edge (K = KTE) are so
designated.

RADIAL

STATION: The mean r-value of each annular region.

RADIAL

VELOCITY: The area-averaged value of V.
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TANGENTIAL _
VELOCITY: The area-averaged value of Vg, -

AXIAL R ‘
VELOCITY: The area-averaged value of V.

STATIC
PRESSURE: The area-averaged value of p.

DENSITY: The area-averaged value of p/g,.

This is followed by a station-by-station listing of the hub-to-tip distributions of
blade-to-blade pressure loadings, calculated simply as

Ap = pp ~ Ps

The first column lists the values of z and the remaining columns (read from left to
right) list the hub-to-tip values of Ap for each annulus.

The last portion of the output gives the following mass-averaged, overall performance
parameters:

Inlet and exit pressure head: P/p as calculated from equation (IL 26).

Inlet and exit absolute velocity head: 1/2 V2, - as calculated from equation (II. 28).
Total head rise: Aﬁ, as calcplated from equation (I 30).
Shaft power per channel: Pg, as calculated from equation (II. 31).

Overall efficiency: 7 , as calculated from equation (IL 32).

Mass flow rate per channel: wr, as calculated from equation (IL. 27).

This program will also terminate with an input tape end-of-file condition,
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FIGURE C.1 (Continued)
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TABLE C.1
FORTRAN IV LISTING OF EXACT ANALYSIS COMPUTER PROGRAM

THREE-DIMENSIONAL FLOW ANALYSIS FOR ROTATING CHANNEL

OF ARBITRARY BOUNDARY SHAPE
USING METHOD OF STAR RESIDUALS IN TERMS OF
RELATIVE VELOCITY COMPONENTS AND PRESSURE

TRW ACCESSORIES DIVISIONs CLEVELAND 6AUGES

AN N

DIMENSION TITLE(16)

COMMON Ul10510522)sVI1051022)sW(10910+22)5P(1051C»22) >
D(10s10922)sR(12510922)sT{10510522)5Z(103510922)+sFRsFTsFZsDMAX(4])>
DELX(4)sNSEQ( 4] RES(10s10922)9AR(10510922)sAT(10510+22)>»
AZ(10s10922)s8RI10510922)93T(10s10522)B2(10510,22)sCR{10510522)5

4 CT(10s1Cs22)sCZ(10s1C 22 9XHsRSTARSTT»PSAT,DLIGIREVsAIMsNVARINTRS
IRSTARsDXsTsJsK e 1T s JJ s s IMAX s JMAX sKMAXsVISCHNBDSKLEHSKTE

REAC 1001y IMAXsJMAXSKMAXSKLESKTE

READ 10GC3y ((IR(T9JsK)sI=1sTMAX) sJ=1JMAX]) sK=1,KMAX)

L N

(WA

READ 1008 (((T{IsdsK)sI=1sIMAX) »J=1JIMAX) 4K=1,KMAX)
READ 1208 (((Z(TadeK)alI=1sIMAX) sJ=19JIMAX) ¢+K=1,KMAX)
CALL JACOB

9% READ 10C0» TITLE

PRINT 1604, TITLE

READ 1001s KOUNTsNUMsMs (INSEQ(L)sbL=194)
READ 1C02s (DMAX(L)sL=1s4)9sAsCRITHE
READ 1CC2Zs REVsDLIQsPSAT»TTsVISC

READ 1002 (HUTTsJsK)s1=1sIMAX) sJ=19JIMAX ) »K=1KMAX)
READ 1CC2s (LOVITadsK)aT=1 9 IMAX) sd=1, MAX ) 9K=1,,KMAX)
READ 1CU2s (LWl TsJdsKYsI=1sIMAX) sd=1sJMAX) s K=1,KMAX)
READ 1002 (((P{TaJsK)sI=19IMAX) »J=1,JMAX) sK=1,KMAX)

NMAX=KQOUNT+MNUM
PRINT 1007, IMAX s JVAX s KMAX sM s AsREV sDLIQsPSAT s TTHVISC
PRINT 1006, {NSEGQ({L)sL=1:4)
NTR=C
ANR = 4¥[MAX¥UMAX®KMAX
DO 15C L=1s4

150 DELXI{L)=DMAX(L)

CALCULATE POINT DENSITIES

DO 501 K=1,sKMAX
DO 501 J=1sJMAX
DO 501 I=1,IMAX
IF{TT1502+5034502

502 CALL STATE
GO TO 501

503 D (TsJsKI=DLIQ

501 CONTINUE

CALCULATE ALL POINT RESIDUALS
NBD=1
DO 350 K=1e+KMAX
DO 350 J=1,JMAX
PO 350 I=1sIMAX
1IF(D (T9sJsK)I500s500+500

500 CALL RESID
380 CONTINUE
PRINT 10172
CALCULATE TOTAL ROOT-MEAN~-SQUARE RESIDUAL
467 RT=0e0
RESMAX = 0.0
RESMIN = RES(1,151)

DO 368 K=1,KMAX
DO 368 J=1,JMAX
DO 368 I=1,IMAX 169



[F(RES(I3JsX)-RESMAX1403+4034+4402
407 RESMAX=RES(TeJsK)
GO TO 1368
403 IF(RES(IsJsK)-RESMIN)404 4,368,368
404 RESMIN = RES(I,JsK) C
368 RT=RT+RES(1IsJsK)
RMS = SQRT(RT/ANR)
RESMAX=SQRT(RESMAX/44)
RESMIN=SCQRT(RESMIN/4.)
PRINT 1013y KOUNTsNTRsRMSsRESMAX»RESMIN, (DMAX(L)sL=1s4)
DO 151 L=1,4
151 DMAX(L)=0e0
IF(RESMAX-CRIT*E)3699369:370
370 KOUNT=KCUNT+1
NTR=0
IF(KOUNT~-NMAX)36(0»360,371
C-START SUCCESSIVE VARITIATIONS CYCLE
360 DO 460 KX=2sKMAX
DO 460 JJ=1s+sJIMAX
0C 460 11=1sIMAX
IRSTAR=1
CALL STAR
DO 460 L=1s4
NVAR=NSEQI(L)}
GO TO (11192225333+450)sNVAR
111 IF(KK=2)1460+,460 4611
611 IF((IT~-11#(IMAX=-11)1460+4604+450
222 TFIKK=2146N4LA0,481
481 TFA(KK-KMAX)4504482 9460
482 TF((JJ=-1)1 ¥ UMAX=JJ) 1460460450
333 IF(KK=21460,485% 486
485 [TF({JJ=-1 )1 ¥ (UMAX-JJ) V460,460,471
671 TFILIT=-1)*(IMAX-TT1Y460+4725450
472 TFLAZITIT 9JJsKK)1460+450+460
LEH TF(CK-KMAX)48B794609460
G487 IF({JId=2)*¥(UMAX=JJ))460+4604450
450 CALL ADJ
460 CONTINUE
DO 153 L=1s4
[F (DMAX{L})) 561956294561
561 DELX{L)Y=DMAXI(L)
GO T0O 153
562 DELX{L)=DELX{L)*A
153 CONTINUE
GO TO 467
C % % QUTPUT ROUT INE 3 % %
98 PUNCH 100Cy TITLE
KOUNT=KOUNT-1
PUNCH 1001 KOUNT sNUM M, (NSEQ(L)sL=1+4)
PUNCH 1002, (DFLXI(L)YsL=1+4)9sAsCRITHE
PUMNCH 1002y REVSDLIQsPSAT»TTHvISC
PUNCH 1002 ({01 sdsK) s T=1sIMAX) 9J=19sJIMAX ) sK=1sKMAX)
PUNCH 10C2, {UIVITsdsK)sI=1sIMAX) sJ=14JMAX) 4X=1KMAX}
PUNCH 1302 {{(W(TadsK)sI=1sIMAX) 9Jd=1sJMAX ) sK=1sKMAX)
PUNCH 1002, {{{P{TsdsK)sI=1sIMAX) sd=1sJIMAX ) sK=1KMAX)
PRINT 1004s TITLE
DO 97 K=1sKMAX
PRINT 1005
97 PRINT 1003, ( (TadesKstUlTadsK)sVITesJsK) oWl TeJsK)gP{TsJsK)sN{IsJsK)
1 sRES({IsJsK) o I=1IMAX)sJ=1y»JIMAX)
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GO TO 99

369 PRINT 1014
GO TO 98

371 PRINT 1015
GO TO 98
* 33 INPUT-0OUTPUT FORMATS * 3% %

1000 FORMAT(16AS) :

1001 FORMAT (2613} :

1002 FORMAT(BF1047)

1003 FORMAT(3134+1P6E18B.6)

1004 FORMAT(16A5//7/)

1005 FORMAT(//2Xs1HT 92X s1HJ92Xs1HKs 9Xs1HUs17Xs1HV 17X s1HW17Xs1HP 417X,
11HD 15X +3HRES/ ) :

1006 FORMAT(2X23HADJUSTMENT SEGUENCE IS +411+38H WHERFE U IS 1s vV IS 2
1w IS 39 P IS 4e//7)

1007 FORMAT(I391HXsI1231HXsI12+5H GRIDsHXs2HM=312+6Xs2HA=41PEL1Qe4//
1 5H‘REv=9lpEl0-495X’54DLIQ=91PE100495X95HP5AT=91951004,5X93HTT=9
2 1PE1Ce495Xs5HVISC=91PEICe4/) '

1C0E FORMAT(1PEE13.7)

1612 FORMATI(6H RELAXs3Xs5HNO OF +5X s IHTOTAL RMSs7X s THMAX RMSs7X
1 7THMIN RMSs16X+s44HMAGNITUDE OF BIGGEST ACCEPTED ADJUSTMENT FOR/
2 6H CYCLE#3XsHHTRIESs3(6XsBHRESIDUAL) 917X e 1HU 13X s1HV 13X s1HW)
3 13Xs1HP/)

1012 FORMAT (169189 1P3E14e498X91P4E14e4)

1014 FORMAT (/720X +9HCONVERGED/ )

1015 FORMAT (/20X s32HMAX IMUM NUMBER OF CYCLES EXECUTED/)
END
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SUBROUTINE JACOB
CALCULATION OFy JACOBIAN COEFFICIENTS FOR GENERAL-TO-CYLINDRICAL
COORDINATE TRANSFORMATION )
COMMON U(1091022) sV(10s10922)sW(10s1022)9P(10910+22) >
1 0(10’10,22)9R(10y10s22)9T(10910’22)9Z(10910’22)’FRoFTvFZyDMAX(4)9
2 DELX(4)sNSEQ(4)> RES(10510+22)3sAR(10910+22)9AT(10,10522)>
3 AZ(lOle!ZZ)9BR(10910022)’BT(IO’IC’ZZ)982(10;10922)9CR(10’10’22)’
4 CT(IO,IOOZZ)yCZ(]O&lovzz)9XH,RSTAR9TT,pSAT9DLlQpREV’A9M’NVAR9NTR9
5 IRSTAR’DX’IQJ’KOII’JJ’KK’IMAX,JMAX’KMAX’VISC’NBD’KLE,KTE
NO 18 K=13sKMAX
DD 18 J=1,sJMAX
NO 18 1=1sIMAX
IF (1-113s3s4

7 RA = R(I+1,J9sK1=-R{IsJsK)
TA = _T(I*levK)*T(I9J9K)
ZA = ZUI+19JsK)I=2(19+J5K)
GO TO 7
4 1F (1-1MAX)}5+6,46
§ RA = (R{T+1sJsK}=RII-19JsK)) /2
TA = (TUI+1sJsK)=T(I=-1sJsK)) /2
ZA = (Z(I+15JeK)1=2(I=1sJsK)) /2
GO 10 7
6 RA = Ri{IyJsK}=R{T=-15J5K)
TA = TilsJdeX)=T(I-15JsK)
ZA = Z{lseJeK)1=2(1-1sJsK)
7 1F (J--1)18+8,9
8 RB = RUIsJ+14K)-R({I»JsK)
TR = T(IsJ+1sX)=T(IsJsK)
/B = Z2(1sJ+1sr)=2(1sJsK)
GO 10 12

9 IF (J-JMAX)10s11511

10 RB = (R(IsJ+1sK)-RI(TsJ-19K)}) /20
T3 (T{TsJ+1,K)=T(TsJ=1sK))/2
PAS) {(Z{1sJ+1sK)=2{T15J=-1sK}) /2
GO TO 12

11 RB = RIUIsJeK)=RI{IsJ=-1sK)
T3 = T(lesJeK)=-TI(TaJ=-1sK)
28 = Z(leJdsK)=Z(1sJ-19K)

12 IF (K-1)13+13»14

13 RC = R(IsJsK+1)-R(1IsJsK)
TC = TU{lsJeK+1}-T(IsJsK)
72C = Z{1aJsK+1)=2(1sJsK)

G0 T1C 17
14 1IF (K-KMAX)154+16+16

15 RC = [R{TsJsK+1)1-RI(TsJsK=-1))/2e
TC = (T(lsdsX+1)=T(IsJsK=~1))/2e
7C = {7201 JsK+1)=7(1sJsK=1)1/2

Go 10 17

16 RC = R(I4JsK)=R{IsJdsK-1)
TC = TUTleJsKI=TlIsJsK=-1)
20 = Z(leJdeK)=Z{1sJsK~-1)

17 D = RA{TB*ZC-7TC*ZB)+RB* (TC*ZA-TA*¥Z2C)+RC* (TAXZB-TB*ZA)
AR(IsJsK)=(TR*¥7C-TC*ZB)/D
BR{TsJsK)={TCH¥ZA-TA*ZC) /D
CR{TsJsK)=(TA¥Z3-TB¥*¥ZA}/D
AT (1 9JsK)=(ZRE*#RC-ZC*¥RB) /D
BT(1sJsK)=({ZCH*RA-ZAXRC)/D
CTUIsJsK)=(ZAXRB-ZB*¥RA)}/D
AZ(1,JsK)=(RB¥TC-RC*¥TB)/D
BZ(19JsK)=(RC*TA-RA¥TC)}/D
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18 CZ(1+JsK)=(RA¥TB-RB*TA}/D
RETURN -~ S
END
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SUBROUTINE ADJ
C-REDUCTION OF TOTAL RESIDUAL BY SUCCESSIVE VARIATIONS OF U, Vs Ws P
COMMON U{10510522)sV{10510522)sW{10510+22}sP{10510+22)>
D(10910;22)9R(10,10922)’T(10'10922)92(10,10922)9FR,FT,FZQDMAX(4),
DELX{4)sNSEQ(4) RES{10+10922)19AR(10+10s22)sAT(10410+22)
AZ2(10510522)sBR11N31N522)19BT(10510522)sB82(10510422)sCR{10510+22)>
CT110910322)9C2(10910522) sXHIRSTARSTTsPSATsDLIGsREVsAsMeNVARSNTR
IRSTARsDX sl s J oK Il s JJs KKy IMAX 9 JMAX s KMAX s VISCHoNBD SKLELKTE
CURRENT VALUES OF ALL AFFECTED QUANTITIES TEMPORARILY STORED
HI1=RES({ITsJJsKK]}
HZ2=RES{II-1+JJsKK)
HA=RES(II+1sJJsKK)
Hae=RES(I1+JJ-1»KK)
HS=RES(T1sJJ+1+KK)
He=RES(IT1sJJsKK~-1}
H7=RES({TIsJJsKK+1)
RHLD=RSTAR
DX=DELX{NVAR}
HU=U(TTsJJsKK)
Hy=V(11sJJ,yKK)
Hw=W(IlsJJsKK)
HP=P{I1sJJeKK)
HD=D2(T1+sJJsKK)
C~SUCCESSIVELY APPLY TRIAL VARIATIONS TO Us Vs We P
5 DO 480 MA=1 .M
420 50 TC (4224234249425 ) sNVAR
422 UlT1sJJsKK)=HU+DX
GO TO 421
423 VITTsJJsKK)Y=HV+DX
50 TO 421
424 WITTsJJeKK)=HW+DX
GO TN 421
425 P(I14JJsKK)Y=HP+DX
[F(TT)I461 94219461
461 1=11
J=JJ
K=KK
CALL STAT=Z
427 NTR=NTR+]
IRSTAR=2
CALL STAR
IF(RHLD-RSTAR}430,430y4131
431 IF(ABSI(DX)}=-DMAX (NVAR))457+s457,920
920 DMAX(INVAR)=ARS(DX)
GO TO 457
430 [F(DX)1433+457+4732
4372 DX=-DX
GO TO 420
433 DX=-A*¥DX
480 CONTINUE
C~RESTORE ALL AFFECTED QUANTITIES TO ORIGINAL VALUES
U{TTsJJsKK)=HU
VIITsJJsKK)=HV
WITT9aJJeKK)=HW
PlIlsJJsKK)=HP
D(ITeJJsKK)=HD
445 RSTAR=RHLD
RES(ITsJJsKK)=H]
IF(II-11446+4469447
4647 RES(II=-19JJsKK)=H2

(S I o RUV BN ]
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446
449

448
451
450
453
452
455
454
456
457

IF(ITI~IMAX)449,4484,448
RES{IT+1sJJsKK)=H3
IF(JJ=11450+4504+451
RES{ITsJJ~1sKK)=Hg4
IF(JI=-UMAX 4534529452
RES(ITsJJ+1+KK)=HS
IF(KK=1)454+4544+455
RES(ITsJJsKK-1)=H6
IF{KK=-KMAX)4564457+457
RES(II sJJsKK+1)=HT
RETURN

END
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SUBROUTINE DLOSS

CALCULATION OF LOSS TERMS IN MOMENTUM EQUATION . :
COMMON U(10910922)9V(10910!22)9W(10910922))p(10910922)’
1 D(10910922)’R(10’10022)97(10’10322)02(10’10922),FR;FT,FZ’DMAX(4)9

2 DELX(4)sNSEQ(4) RES(10410522)9sAR(1051022) 9AT(10510+22)

3 AZ(IO,IOOZZ)’BR(10,10922)'BT(10910922),82(10910922)’CR(10910’22)9
4 CT(IO’lO’ZZ)QCZ(IOQIOQZZ)’XH’RSTAR’TTvPSAT’DLIQ,REV’A’M’NVAR’NTR’
5 IRSTAR’DX’I’JQK’II’JJ’KK!IMAX’JMAX’KMAXQVISC’NBD!KLE’KTE

FR=CeN K - -

FT=0.0

F2=0e0

RETURN

END
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SUBROUTINE RESID

CALCULATION OF POINT RESIDUAL

COMMON U(10+10422)9V(10910922)sW(103510+22)9P(10+10+22)

1 D(10s10s22)sR{10+1Cs221sT{10+1022)+2(10s1C922)sFRsFTsFZsDMAX(4])
2 DELX(4)YsNSEQ(4) RES{10510922)9AR(10+10,22)sAT(10+510922)>
3 AZ(10s10922)9BR{10s10+22)sBT(103510522)382(10510522)sCR(10+10+22)>
G CTU10+10922)5C2(1091Cs22) 9XHsRSTARTTsPSATsDLIQsREVSAIMINVARINTRY
5 IRSTARSDXs1sJsKs119JdJsKKy IMAXsIMAX sKMAX sVISCoNBDHKLEHLKTE
IF(NBD)I400+35]14+99

CHECK WALL BOUNDARY CONDITIONS

C

99 IF(K-21351510C,1C3
* % ¥ K=2 3R
100 IF(({I-1)¥(IMAX-T))14004+121+124
121 IF((J-1)%¥{JUMAX=-J)1400+102+122
122 TF(AZ(T+sJ9KY)1123935151273
123 W{TsJeK)==U(TsJsKI*¥AR(T9JsK)/AZ{IsJsK)
GO TO 1351
124 IF({J=-1)*(IMAX-J))400+111+351
102 DOD=(BT{IsJsK)/RITsJsKII/IAR(IsJsKI¥BZ (19 JsK)=BR{IsJsKI*AZ(T9JsK))
WlTedeK) = =VI(IsJsKI¥AR(TsJsK)*DDD
GO TO 351
103 IF(K-KMAX)}108+1C45400
* ¥ K=KMAX * % %
104 IF((I-1)Y%¥(IMAX-1))400+105,106
105 UlTlsJdsX) = -W(IyJ9K)*A7(I’J9K)/AR(IngK)
106 TF({J-1)*{IUMAX=-U)Y)140C+1074351
107 VI1sJdsX}) = —R(I,Jyk)*(U(IprK)*BR(I9J9K)+W(I9J'K)*BZ(19J,K))/
1 BT(IsJsK)
GO TO 351
* %% K IS NEITHER 2 NOR KMAX * %
108 TF((I-1)*%({IMAX=-1)14005109,110
109 IF((J=1)%¥(JUMAX-J))1400+112s114
110 IF((J=-1)¥({UMAX-UJ})14004+1119351
111 W(TsJdsK) = =(UITsJsKI¥BR{T s JsK)+VITsJsKIXBT{1sJsKI)/R(TsJsK))/
1 BZ{1sJsK)
GO TO 13%1
112 DDO=(BT{IsJsKI/RITsJsK)I/TAR(TsJsK)*¥BZ2 (T 9sJsK)=BR(ITsJsK})*¥AZ(TsJsK})

W Tedsd) = =V(IsJsL)Y¥AR(T9JsK)XDDD
UlTedesK) = VI sJsKIFAZ(TsJ»X)*DDD
GG TO 351

114 UlTsJdeK) = ~WITsJsKI¥AZ(14JsK)/ARIT sJHK)

CALTULATE ALL DERIVATIVES

351 [F(I-1)14004354,353

384 UA={UTT+]1sJsK)=UlTsJsK)}
VA {(V(T+1sJeX)=VIIsJsK))
WA {W(I+1 e JsK)=W(TsJsK})
PAz(P{T+19JeK)=P(IsJsK)})
IFITT)IB5115357+511

511 JA—(D(I+19J9K)—D(19J;())
GO TO 357

353 IF(I~IMAX)355,356,400 ... .

355 UA=(UllesJdsK)-U{(I=-19JsK)}
VAZ (VT3 JsK)=VII=-1sJsK))
WA= (W{TsJsK)=W(I-1sJsK}))
PA=(P(1sJsK}~-P(I-1sJsK)}))
IF(TT)52133574+521

521 DA=(D(TsJsK)I=-D(I-1> J,K)l
GO TO 357

255 UJA={U(T+1sJsK)-U(I=-1eJeX})/ 2.
VA= {VII+1 9 JeK)=VII=-1sJsK)}/ 2
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531
357
359

541

358
361

551

160

561
362
364

571

3613
366

581

365

591

CONVERT

WA= IWIT+1edeK)=W(T=1sJsK))/
PA=(P{T+1sJsK)=PI=1»JsX}))/
IF(TT)®31+357+531
DA=(D{I+1sJsK)=D(I=19JsK)}/
IF(J-11400+359,358

UB= (Ul TsJ+1,K)=U(TsJsK))
VB=(VIIsJ+1,K)=VIIsJsK))
WB=(W(lasJ+l4K)-W({lsJsK))
PRB={(P(T1sJ+1sK)=P(IsJsK)})
IFITT)I541362+541
PDR=(D(T1sJ+1,K)=-D(IsJsK))

GO TO 1362
IF(J-JUMAX)360,3615400
URB=(U(TsJdeX)=U(lsJ=-1+K)})
VB=(V{IsJsK)}=VIiIsJ=-1sK)})
WE=(WlTIsJeK)=W{TlsJ=-1sK))
PB=(P({IsJsK)=P{1sJ-15K1})
IF(TT)551 93629551
DRB=(D(IsJsK)=D{1sJ-1sK))

GO T0 362

UB= (Ul TsJ+1sK)=UlTsJ=1sK)}/
VB=(VITsJ+1sK)=VIIsJ=-1sK) )/
WB=(W(lTeJd+1 X )=WlTsJ=1sK))/
PR=(P(TsJ+]1X)=P({1lsd=1sK})}/
IF(TT)1561 362,561
DB=(D{1eJ+1+4X)=D({1sJ-1sK}))/
IF{K-11400+36%4 43673
UC={U{TsdsXK+1)=U(T9sJsK})
VC=(VIIsJeX+1)=VIIsJsK})
WC=(W{TeJdsX+1)=W(TsJrK))
PC={P(T1sJeX+1)=-P(1sJsK})
IF(TTIRT1 3674571
DC=DITsJsK+1) =D TsJsK))

GO 10 367
IF{K-KMAX)3654+3665400
UC={U{TsJs)=UlTsJsK-1)
VC={VITeJsX)=VI(IsJsK-1)
WC={WlTeJsKY=tI(TsJsK=-1)
RPC=(PlT1sJsK)}=P(IlesJsK-1)
IF(TT)581+367+581 '
NC=(N(TeJs)=D(TsJsK~-11))

GO TC 1367
CC={UlTsJsK+1)=UlTsJsK-11)/
VCE={VITadeK+1)=VIIsJsK=-1))/
WC=A{W{TodeK+1)1=W(1sJsK=-1))/
PC=(P(IsJsX+1)-P(TsJsXK-1))/
IF(TT)I5919367+591
NDC=(D{TeJsXK+1)=D(TsJsK=1)}/

2o
2e

2.

2e
2e
2
2e

2

2'
2e
2o
2e

2

ALL DERIVATIVES FROM GENERAL

TO CYLINDRICAL COORDINATES

367 UR=AR(I’JsK)*UA+BR(f9J9K)*UR+CR(19J9K§*UC
UT=AT(TsdsK)*¥UA+BT (I sJs I¥UBH+CTIT 5 JeK)*UC
UZ=AZ 1T sdsXIHUAHEZ (19 JsKI*USHCZ 115 JsK)*¥UC
VR=AR(TsJsC)XVA+RR(T s JsL)¥VB+CR{TsJsK)*¥VC
VT=AT({TsJsKIEVA+ET Lo JsK)H¥VB+CT(TsJsK)*¥VC
VZ2=AZ{TsJs <) RVA+BZ {1 9JsK)XVB+CZ(19J,sK)¥VC

WR:AR(I9J;K)*WA+BR(]9J9K)*WB+CR(I

o JoK Y ®¥WC

WT=AT(TsJsX)XWA+BT T »J»K ) *¥WB+CT (19 JsK)*¥WC
WZ=AZ{1sJsK)FWA+BZ (19 JsKIRWRHCZ (T s JsK)*¥WC
PR:AR(I,J,K)*PA+BR(I.J,K)*PB+CR(I,J,K)*PC
PT=AT(I’J'K)*PA+BT(I’JQK)*PB+CT(I’JsK)*PC
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PZ=AZ2{1sJsK)*¥PA+BZ {1 s JsK)¥PB+C2(19JsK)¥*PC
IF(TT1370+3754370

370 DR=AR(T s JsK ) *¥DA+BR( I s J oK) *¥DB+CR(1sJsX)*¥DC
DT=AT(IsJsKIXDA+BT (L +sJoK)¥DB+CT(I+JsK)*¥DC
DZ=AZ({1sJsK)¥DA+RZ (T +JsK)¥DB+CZ (]9 JsK)¥NC
GO TO 138¢C

375 DR=0,0
DT=0.O
DZ=040

380 UU=U(TsJsK)
VV=VI(]sJsK)
WW=WI(TIsJsK)
DD=D(1sJsK)
RR=R({IsJsK)

CALCULATZ LOSS TERMS

IF(VIS5C)13854+390+385

385 CALL DLOSS
GO TO 391

390 FR=0.0
FT=0.0
F7Z=0.0

CALCULATE POINT RESIDUAL

391 R1=PR/DD +UU*UR+VV*UT/RR+WW*{J7~( (VV+RR*¥REV ) *%2,) /RR+FR
R2=PT/(DD*RR)Y+UUXVR+VVRVT /RR+WW¥VZ+UUXVV/RR+2 % ULJ®REV+FT
R3=PZ/DD+UV¥WR+VVXWT/RR+WW*WZ+FZ
R4=UU/RR+UR+VT/RR+WZ+{UUXDR +VV*¥DT /RR+WWxD/7 ) /DD
RES{TsJsX)=RI¥R1I+R2*¥R2+R3¥RI+ (R4 ¥REVER (591 +sKLE) ) **%2,

400 RETURN
END
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SUBROUTINE STAR

CALCULATION OF LOCAL STAR RESIDUAL
COMMON UL10s10+22)5V(10510922)sW(10910+22)5P(10510+22)>»

1 D(ICOIOOZZ)oR(lelOvZZ)yT(lo’]OQZZ)02(10’10922)9FR9FT;FZoDMAX(4)q
2 DELX{4)YsNSEQU4) RES(10s10s22)9AR(10Cs1Cs22)5AT(10410+22)>
3 AZ(10,10922).BR(10,10,22),BT(10,10,22),82(10.10.221,CR(10.10.2?),
4 CT(10’10922)9CZ(10919,22)9XH9R5TARQTT’PSAT,DLIO;REVQAyM’NVARoNT?,
5 IRSTAR’DX,I’J’K’!I,JJQKK7IMAXQJMAX9KMAX’VISC’NBD!KLF’KTE
RSTAR=0.,0

[160=0

I=11

J=JJ

K=KK

NBD=1

389 GO TO(375+378),IRSTAR
378 CALL RESID
375 RSTAR=RSTAR+RES (I sJdsK)
NBD=C
400 1GO=1G0+1
GO 10 (391+392,39343964,395,396+402)51G0
391 I=11~1
IFt1-1)40C,389,389
392 1=11+1
IF({-IMAX)389+,389,400
393 =11
J=JJ-1
IF(J-114004+389,389
394 J=JJ+1
IF(J~JMAX)389+389+400
335 J=JJ
K=KK~-1
IF(K-=1)1400+389,389
396 K=KK+1
IF{K-KMAX)389,2389,400
402 RETURN
END
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SUBROUTINE STATE

CALCULATION OF POINT DENSITY - ’
COMMON U(]OolO»ZZ)9V(10’10$22)9W(10910922)9P(]0910,22)9
1 D(10s10s22)sR(10910+22)1sT{10+10922)+72(10+1022)4FRsFTsFZ+sCMAX(4)

2 DELXU4)sNSEQ(4) RES{10+10+22)sAR(10510+22)sAT(10+10+22)
3 AZ{10510322)+sBRI10910+22)sBT(10+10922)sBZ2{10510422)sCR{10+10522)>
4 CT(1091C922)4C211091Ce22) sXHsRSTARSTT+PSATIDLIQ4REVAIMsNVARINTR
5 IRSTARSOX sl s JsKo Il s JJsKKs IMAX s JMAX sKMAXsVISCoNBDWKLESKTE
PSP=PSAT-P(TsJsX)
IF{PSP)1014+101,102

101 C(1sJdsK) = DLIQ
GO TO 103
102 DI{1sJsK) = DLIQ/(1e+TT*PSP)
103 RETURN
END
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DATA REDUCTION PROGRAM FOR RESULTS OF EXACT
THREE-DIMENSIONAL INDUCER ANALYSIS PROGRAM

TRW ACCESSORIES DIVISIONs CLEVELAND 6AUGED

aNeaNaNale!

DIMENSION TITLEC(16)
COMMON U(]O’IO’ZZ)’V(10910922)QW(10910;22)9D(10,10o22)90(1091“97?)
1 ’R‘IO’IOOZZ)’T(10910922)92(10’10922’9A(10910922)'0(10’109?2)9
2 UB(10¢22)9VB(10922),WB(10922)1PB(10’22)’DB(10$22)’RB(]0’22)’
3 DELP(IO’ZZ)0Xf]0910)9Y(10’10)’REvyDLIQoPSATQTTvIGO’I;JsKoIMAX,
4 JMAXsKMAX s IM1,UM1sBsSUBSTOT»QOTOT
REFAD 10019 IMAX 3 JMAXI»KMAX sKLESKTE
READ 10035 (((R{IsJsK)sI=1sIMAX)yJ=19sJMAX) sK=1sKMAX])
READ 1003 (((T(TsJsK)aT=1sTMAX)9J=19JIMAX) sK=1+KMAX)
READ 1003 ({(Z2(1sJsK)sI=1sIMAX) s =1 s JMAX]) 9K=14KMAX)
999 READ 100CSTITLE
PRINT 1000,TITLE
READ 1001 +sKOUNT
PRINT 1012+sKOUNT
READ 1002 +s8BLANK
READ 10C2sREVeDLIDIPSAT,TT
READ 1002 (((U(TsJsK)sTI=1sTMAX) sJ=TsJIMAX) sK=T1,KMAX)
READ 10029 (((VIIsJsK)sI=19IMAX) s J=1sIMAX) ,K=1 KMAX)
READ 1002 (((W(TsJsK)sI=15IMAX) s =19 JMAX) sK=7 4KMAX)
READ 10029(((p(I’JQK)9I=1’INAX)¢J=10JVAX)9(219KMAY)
CONVERT FROM ABSOLUTE TO RELATIVE VELOCITIFS ARD
CALCULATF POINT DENSITIES
DO 1 K=1sKMAX
PO 1 J=1,ysJMAX
DO 1 I=1,IMAX
VIIsJeK)=R(TsJsK)¥REV+VIT5JsK)
IF(TT)I2932
2 PSP=PSAT-P(1,sJ,4XK)
IF(PSP)3s3421
21 DITsJsK)=DLIN/(1.+TT*PSP)
GO 7O 1
3 DITIsJsK)=DLIQ
1 CONTINUE
CALCULATE INCREMENTAL THROUGHFLOW AREAS AND MASS FLOW RATES
IM1=IMAX-1
JMI=JMAX -1
DO 4 K=1,KMAX
PO 4 I=1,IM1
RBITIsyK)={R({Ts1sK)+R{I4191+K))/2e
DO 4 J=1,sJM]
A(I’J!K)zRB(I’K)*(R‘I+191,K)°R(I!1’K))*(T(I+]!J+1$K)+T(I9J+]QK)

1 ~T(T4+19JsK)=T(1sJs¥X1)/2e
4 O(I,J,K)=A(19J,K)*(w(IoJoK)+W(I-J+1oK)+WlI+],JsK1+W(I+],J+],K)\*
1 (D(T s dsKI+D{ T o J+1 oK1 +D(T 419y KN1+N{TI+19J+14<) 1 /160

CALCULATE AREA-AVERAGED QUANTITIES
DC 6 1G0=1,5
NO 6 K=1sKMAX
DO 5 J=1,y»JMAX
DO 5 I=1,IMAX
GO TO (51+52953954955),+1G0
51 X(IsJ)=U(lsJsK)
GO TO 5
52 X(TeJi=VIIsJaK)
GO 10 5
53 X{(1sJY=W({TsJeK])
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GO T0O 5
54 X(T9J)=P{IsJsK)
GO TO 5
55 X(I’J)=D(I’J9K)
5 Y(I9sJ)=A(]sJsK)
DO 6 I=1,1IM1
CALL SuM
GO TO (61362+62964965) 160
61 UB(1sK)=5UB/TOT
GO TO 6
62 VB(T1,K)=SUBR/TOT
GO TO 6
63 WBI(I,K)Y=SUR/TOT
GO TO 6
64 PBII,KY=SUB/TOT
GO TO 6
65 DB(I,K)=SUB/TOT
6 CONTINUE )
CALCULATE MASS FLOW RATE PFR CHANNEL
QTOT=0,.N :
PO 7 1=1,1IM1
DO 7 J=1,UM]
7 QTOT=QTOT+Q(I+J»1)
CALCULATE MASS-AVFRAGED QUANTITIES
K=KLE
80 DO 8 IG0O=1,3
CALL MAv
GO TO (B81+82sB3)91G0O
81 PNH=8
GO TO 8
82 vz2=8
GO TO 8
83 Uv=B8
8 CONTINUE
IF(K=1)1099,13C
9 PDIN=PD
V2IN=V2/2.
UVIN=UV
K=KTE
GO TO 80
10 PDEX=PD
V2EX=V2/2e
UVEX=UV
DH=PDEX+V2EY-PDIN=-VZIN
PSH=(UVEX-UVIN)*QTOT
EFF=PH*QTOT /PSH
CALCULATE BLADE-TO-BLADE PRESSURE LOADING
DO 12 K=1sKMAX
PO 12 1=1sIMAX
12 DELP({I4K)=P (T 4] sK)=P(TsJMAX LK)
C %* % % OUTPUT ROUTINE ¥* ¥
PRINT 1004
DO 11 K=1sKMAX
IF(K-KLE)111+112,113
112 PRINT 1005
GO TO 111
113 IF(K=-KTE)111s114,111
114 PRINT 1006
111 PRINT 1007 Z(191sK)sRB{ITsK)sUB(1sK)sVB(1sK)sWE{1sK}sPB(1:K),
] DR(1sK}
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11 PRINT 1008+ (RB(IsK)sUB(TsK)sVBIIsK)sWBITsK)sPBIT,K)sDB(IsK)>

132

133
134

131

1000
1001
1002
1003
1004

1005
1006
1007
1008
1009

1

1
1

2

1

[=2+1M1)
PRINT 1010
DO 131 K=1,KMAX
IF(K-KLF1131+132,133
PRINT 1005
GO TO 131
IF{K-KTE1131+1345121
PRINT 1006
PRINT 1011sZ(191sK)e(DELP(14K)sI=1,sIMAX)
PRINT 1009s PDINsPDEXsV2INsV2EXsCHsPSHsEFF»QTOT
GO TO 999
* % x INPUT=-0QUTPLT FORMATS * ¥ %
FORMAT (16A5)
FORMAT (26172)
FORMAT(8F1047)
FORMAT (1P6E13.7)
FORMAT(//10X52HHUB~-TO-TIP DISTRIBUTOINS OF AREA-AVERAGED QUANTITIF
S777/ 10XSHAX TAL 92 (9X6HRADIAL) o5X1OHTANGENTTIAL 3 1NXSHAXTAL
IXG6HSTATIC/2(8BXTHSTATION) 33 (7XBHVELOCITY) s 7X8HPRESSURE
8XTHDENSITY/Z /)
FORMAT (1X18HBLADE LEADING FEDGF)
FORMAT{1X19HBLADE TRATILING EDGE)
FORMAT(/7F155)
FORMAT (15X6F1%545)
FORMAT (///720X246HMASS-AVERAGED QUANTITIES//2(10XSHINLET » 11X4HEXTT)
10X5HTOTAL s 8X THCHANNEL s BX 7THOVERALL s BXTHCHANNEL /2 (7X BHPRE SSURE ) »

2 2(7X8HVELOCITY)» 11X4HHEAD » 10XSHSHAFT «SX1OHEFFTCIENCY
3 6XIHMASS=FLOW/ 4 ( 1IX4HHEAD) s 11 X4HRISE s 1OXSHPOWER 926X 4HRATE//8F 1545

1010 FORMAT (//2X9HZ-STATIONsOX58HHUB=TO-TIP DISTRIBUTION OF BLADE-TO-FL

1

ADE PRESSURFE LOADING//)

1011 FORMAT{ F11+4s9X1P1CEIO4)
1012 FORMAT(/23HREDUCED OUTPUT OF CYCLELI3)

END
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SUBROUTINE SUM

CALCULATE WEIGHTFD SUM _
COMMON U(10910922)9V(10’1C522)’W(10,10922)’p(10,10’22)90(10’10’22)

1 sR(101022)sT(1Cs10922)9Z(10s1Cs22)3sA(1C»10+22)+Q0(10+10+22)
2 UB(10+22)sVB(10s22)sWB(10+22)sPB(1Cs22)5DB(10+22)sRB(1Ns22)>
3 DELP(]OoZ?!’X(]O!lO)9Y(10’10)9REV9DLIQoPSAT9TToIGOvIonK,IMAX9
4 JMAX sKMAX s IM143JMIsBsSUBSTOTHQTOT

SUB=0e0

TOT=0.0

DO 1 J=1,JM]

SUB=SUB+Y (T o) ¥ {X(ToJ)+X(TsJ+1)+X(I+1,J)+X(I+1sJ+1)) /40
1 TOT=TOT+Y(I,J}

RETURN

END
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SUBROUTINE MAV
CALCULATE MASS-AVERAGES
COMMON U(10y10922)9V(10910’22)9W‘10’10’22)’P(10$10’22)90(10910’?2)
1 sR{10,1022)sT(10s10422)s2(1051022)4A(1Ny 109221 9Q(10s104221)
2 UB(looZZ)’VB(10’22)’WB(10922)9p8(]0a??)9DH(]0922)9RR(10922)’
3 DELP(10922)9X(10,10)’Y(10910)9REV9DLIOOPSAT’T79[GOvI;J,<9IMAX9
4 JMAX S KMAX s IM1,3UM13RsSUBSTOTH,QTOT
DO 10 J=1sIMAX
DO 10 I=1,IMAX
GO TO (1+2+3),1GO
1 X{TsJ)=zP({1sJeKI/D(TsJsK)
GO TO 10
2 X{Tad)=UlTsdoK)*¥¥24V (T oK) #¥2+W ([ s eK)R¥2
GO T0 10
2 X{TsJ)=R{I+JsK)XREV*V(1sJsK)
10 Y(T+J)Y=Q(14JsK)
B=0.0
DO 20 I=1sIM1
CALL SuUM
20 B=R+SUR
B=B/QT0OT
RETURN
END
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APPENDIX D

INSTRUCTIONS FOR USE OF APPROXIMATE
SOLUTION COMPUTER PROGRAM

This appendix describes the appr‘oximate analysis program including its two subroutines.
The latter one of these finds blade coordinates for any full blades having radial ele-
ments, constant thickness with or without radial taper and leading edge faring, and a
quadratically-varying lead. Any other shape would require a new blade coordinate
subroutine. The inputs and outputs are described, and block diagrams are included

with a complete Fortran IV listing.

1.

2.

Computer Running Information

The main program and its two subroutines have a common storage require-
ment of 13, 513 locations. The maximum field capability is 11 streamlines
including hub and shroud, and 21 stations including blade leading and trailing
edges; i.e. an 11 x 21 field. The minimum is a 2 x 2 field.

Computer running time dépends on the size of the field and the accuracy
required. The following estimates roughly summarize our experience on
computer times:

a) Time a No, stations

b) Time o« (No. streamlines)?

c) Time « 3/ 1 N
allowable unbalance

d) Time at stations where two-phase flow exists is double that for incom-
pressible flow.

For example, an 8 x 16 field with incompressible flow and an allowable

unbalance of ., 001 took about 400 seconds on a UNIVAC 1107, while a .01
unbalance took 185 seconds. A similar 4 x 6 field at . 001 balance took

24 seconds.

Input Data

The inputs to the program consist of (a) the title and program control
numbers; (b) the geometrical data for locating quasi-normal stations and
the streamlines at the blade leading edge; (c) the blade contour data;

(d) the speed, fluid properties and accuracy required; (e) the distributions
of fluid pressure, velocity and density at inlet; and (f) the various sets of
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fluid data v, pgat and T* for which solutions with the foregoing inputs are
desired. Note that for splitter blades a separate problem should be solved
up to the splitter point, and the output should be used with a change in the
number of blades np to solve a new problem downstream of that point,

Following is a definition of each program input in the order required by the computer;
(the format is given in the Fortran listing):

TITLE: Any identifying information consuming up to 80 spaces.

NQI, NQJ: The number of streamlines (i or I) and one more than the number
of stations (j or J) respectively. The extra station J = NQJ is
required for blade angle data at station J = NQJ-1. I=1 on the
hub, and I = NQI on the shroud; J = 1 on the blade leading edge
and J = NQJ-1 on the blade trailing edge. The "field" stated
in table III. 1 quotes NQI x (NQJ-1), = q; X 9

MNC: The maximum allowable number of hub-to-shroud iteration cycles
at any one station. This limits the running time if the maximum
allowable streamline unbalance error EN (see below) is too small.
In such a case the computing continues and the resulting maxi-
mum unbalance is printed out. We used MNC = 25 in our 4 x 16
runs, (see results in table III. 1), and 1000 for 8 x 16. The actual
number of cycles NC is dependent on EN and was usually 1/4
to 1/2 of MNC except in two-phase cases.

NDATA: The output data control number, specified as 0, 1, or 2, The
use of NDATA is described in the output description further on.
This number makes it possible to omit all field data between the
inlet and outlet, thus saving considerable computing time when
several runs with small fields (say 4 x 16) are required simply
to establish overall performance at various combinations of
Rm, NPSH, and T*. With a 4 x 16 field, up to half the running
time is consumed in the format and printing activity of the
computer,

NDB: A control number that is normally equal to zero. If NDB =1,
a cycle-by-cycle account of the reduction of the total unbalance

p
(—f— EiUi, j) is printed out together with the attendant stream-
go line adjustment magnitudes on' for stations

2 £ J X2 NQJ-1. Following are the geometrical inputs:

Z(1, 1): The inlet axial positions & of strealines at J =1 from hub to tip.
1 £ 1< NQL
R(, 1): The radial positions riatJ =1. 1 < T < NQIL
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Z1, J): The axial positions of the stations j along the hub; i.e., the
locations of the hub-ends of the quasi-normals,

I=land2 £ J <. NQJ.

R@A, J): The radial positions of the stations along the hub. I=1 and
2 2 J 2 NQJ.
Z(NQI, J) The axial and radial positions respectively along the shroud.
and
R(NQI, J): I=NQIand 2 £ J £ NQJ.

At this point, the following data is required by the blade subroutine:

AA, BB, The lead constants a, b, and ¢ respectively, which described
CC: the radial-element pressure side of the blade according to the
formula
de
— =a+ bg + czg2 .1
T a+ bg+ ce (D. 1)
DSEX: The exit boundary layer displacement thickness & ex*, which

is assumed to exist on each side of the blade. The program
distributes &~ linearly by station from zero at inlet, adding it
to the blade thickness,

T1T: The blade thickness t at the radial location R1T — usually at
‘the inlet tip,

DTR: The radial blade taper constant where the blade thickness through-
out the machine (except in the fared region) is a function of radius
only and is given by

t = (TLT) + —3—%— [(RIT) —r] . 2)

We used no taper in our tuns.
ANB: The number of blades np

TF(1,2, 3): The blade suction-side fairing constants at stations 1, 2, and 3. The
blade thickness t at these stations is given by the product of TF and
the t of equation (A.2). 0 £ TF £ 1, and all material is removed
from the suction side only., We used TF(1) = 0 and TF(2 and 3) = 1.
Continuing now with the remaining inputs to the main program, we
have the fluid data:
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EN:

RHOF:
OMEGA:
GO

RHO (I, 1):

P, 1):

VM1(D):

DELTAE(]):

VTB(I, 1):

PSAT:

A Pt
The maximum allowable streamline unbalance . Umax.
0

As noted earlier, this value is exceeded if a balance cannot be
achieved in MNC cycles at any station J.

The liquid density Pf
The rotative speed 2, radians per unit time,
Constant in Newton's second law, g,

The fluid density #;' in the middle of each annulus i or I at the
blade leading edge where J =1, 1 =1 < NQI-1, since the number
of annuli is one less than the number of streamlines,

The fluid static pressure pi' in each annulus. J =1 and
1 21X NQI-1,

The velocity component in each annulus normal to the blade
leading edge at that point in the meridional plane.
1 £ 1= NQI-1.

The exit deviation angle dex, i' of the relative flow from the
direction of the blade in each annulus. This deviation is distri-
buted from zero at inlet according to the sixth power of the
number of stations (am6), thus approximating an unloading
condition near the outlet, We used §ex = 0 for all our runs.

The tangential absolute velocity component Vg ., at the inlet
of each annulus. J=1and1 <1< NQI-1.

The fluid kinematic viscosity

The liquid saturation of vapor pressure pgat

The fluid thermodynamic constant T*

As many combinations of these three final inputs V, PSAT and
T may be added to the other data as the number of solutions
desired for unchanged values of all other inputs. For example,
NPSH depends on the difference between P(I, 1) and PSAT,

whereby a reduction of PSAT with constant values of say zero
for P(I,1) increases the NPSH.
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3. Output Data
All output data is printed in groups. Each is here defined together with the value of
the input control number NDATA for which that group can be obtained — in the order
of their appearance and under the following headings:
a) Input data except for V, PSAT, T.
NDATA =0, 1, or 2, No headings.
The following data groups are printed at station J = 1:

b) Streamline and blade data at station J,

NDATA = 2: Printed in columns headed as follows for streamlines
I=-1, 2,3..., NQI

I The streamline identifying number i.

J: - The station identifying number j.

R: The streamline radial position rj.

Z: The streamline axial position z;.

N: The streamline position n'j corresponding to r and g;

viz., the approximate meridional arc distance along
the blade leading edge from the hub.,

TS: The circumferential position 8g, i of the suction surface
of the channel at location n' — outside the boundary layer
displacement thickness.

TP: The same for the pressure surface

c) Average fluid data at station J.

NDATA = 0, 1, or 2. Columns for annufi 1=1,2,3, ..., NQI-1:
I: The annulus identifying number i.

J: The station identifying number j.

RAV: The annulus mean radial position ry',

ZAV: The annulus mean axial position z;'.
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bl bkt

P: The static pressure pj'.
W: The relative velocity W;'.

VM: The component of velocity Vm, i' in the meridional
streamline direction, except at the leading edge (J = 1)
where this quantity is the input value VM1 normal to
the blade leading edge.

VR: The radial velocity component Vy j'.
VZ: The axial velocity component Vg _j.
D: The density P i'.

d) The first or next set of the final inputs V, PSAT, T ( », Pgat, T*) now
appears for NDATA =0, 1, or 2 under the following heading:

KIN VISCOSITY, VAPOR PRESS,
VAPORZN CONST, — THESE INPUTS USED
FOR THE FOLLOWING DATA,

The following output sequence is repeated for 2 < J £ NQJ-1; i.e., through
the blade trailing edge station.

e) Only if NDB =1, the special cycle iteration data discussed under input
appears for NDATA =0, 1 or 2.

f) Same as output (b) with the following additions: (NDATA = 2)

p
U: The resulting streamline unbalance = Uj.
0
NC: The total number of cycles executed at this station.

g) Blade-to-blade fluid data between stations J and J -1, (i.e., at station j')
NDATA =1 or 2. Columns for annuliI=1, 2, 3, ..., NQI-1 with two
rows of data for each annulus. The first row gives I, J, RAV, and ZAV

as in input (c), and the following:

DWDT: The constant slope %— of the blade-to-blade relative

velocity distribution,
P: The mid-passage static pressure _p_i‘.
PP The channel pressure-side static pressure p, i
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W: The mid-passage (mean) relative velocity Wi'.

WP: The pressure-side relative velocity Wp, i'.
D: The average density .Fil.
DP: The pressuré-side density Pp §'

The second row repeats NC and U from output (f).
Also it gives the corresponding channel suction-
side data PS, WS, and DS.

Same as output (c). NDATA =-2, except at trailing edge (J = NQJ-1)
where this information is printed for NDATA = 0, 1, or 2.

The following additional data is printed for NDATA =0, 1, or 2
after reaching the trailing edge:

Blade element data at exit.

Columns for annuliI=1, 2, 3, ..., NQI-1,

LOSS COEFF: @' calculated by equation (IIL. 22).
EFFICIENCY: 7;' calculated by equation (III. 23).
DEVIAT, ANGLE: &4y ' given by input DELTAE (I).
Overall performance data.

Listed in the following order, each having an appropriate heading:

AH calculated by equation (III. 25)
Py calculated by equation (III, 26)
Py calculated by equation (IIL. 26)

v12/2g, calculated by equation (IIL 27)
sz /284 calculated by equation (III. 27)
W calculated by equation (IIIL 24)

T;k calculated by equation (111, 28)
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Py - calculated by equation (III. 29)

w calculated by equation (III. 30)

Q , Psatand T* given by input, as is the value of after the next two items.

p
UNBAL ALLOW:<§f— Umax) desired. This is the value of EN used at
0
input. The program stores it unchanged under the name
CRN.

p
MAX UNBAL ERR: (Ef)_ Umax) obtained, This is the resulting value of

EN, which is the same as CRN if NC < MNC throughout
the calculations,

For each additional set of v, pggt and T*, a further set of outputs is printed,
beginning with (e) and continuing through (j). For any set that gives no
complete solution due to choking at low NPSH, the message ""NPSH too low

for two-phase solution if NC less than MNC" is printed at the point where

this occurs, and the computer passes on to the next set. It is safe to say

that for typical MNC, even NC = MNC means no solution is possible at larger
numbers of streamline balancing iteration cycles NC. The computer will stop
with an input tape end-of-file condition.
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Read: TITLE,

coordinates of streamlines
at leading edge and of hub
and shroud stations

795

Calculate
leading edge BLADE
Coord's.

(eq's A.1 and A.2)

Read: Speed, fluid proper-
ties, and inlet distributions
of press's., velocities,
and densities

FIGURE D.1

Last

Station
?

YES

713

Calculate

blade surface data for

all i':

(pps pS’ Wpa WS’ pp. pS)i'

(eq's IIL. 13, 14, 15, 17)

34

max,
no. cycles
exceeded

INO

935
Calculate
exit blade element
data (w, n);' for all
i' (eq's 11122, 23)
and overall per-
formance data

AH, p1, P2, 7, etc.
(eq's MI. 25 to 30)

99
Read:
v, Pgat, and TF -
i=1
{ 15
j=i+1
1 160

Estimate positions n' of
streamlines along quasi-
normal at j, and find as-
sociated coord's ri and zj
for all i.

Adjust

streamline loc'ns, n'

for each i from hub to | _
shroud successively

(eq III. 12)

176 ’

YES

Uj < Umax
for all i ?

Calculate
nbalances Uj of all
streamlines i,

(eq III. 10)

Calculate

ANNUL us average fluid
data: (p, W, Vm, V., Vg,
Vg, P )i for all i',

(eq's III. 8, III. 9)

18

Calculate
BLADE coord's. 8g j
and 8y, j and flow angles
Bi',j for all i

(eq's A. 1, A.2 et al)

a) BLOCK DIAGRAM FOR MAIN PROGRAM

{(Numbers above boxes refer to key Fortran statements in the main program)
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FIGURE D.1 (Continued)

Assume liquid

(Subroutine ANNUL >——’ flow, i.e.
p.’

i,j= Pf

Calculate Annul
Outlet Velocity Dxag‘ram
W, Vm, Vo) i,

(eq's. III. 8, et al)

Calculate Annulus
QOutlet Pressure,
1 ,] (quII.Q) J

Are
Loosses

Calculated
?

YES

Calculate
losses dL
(eq. 1.13)

“’e’_‘

50
A Calculate Blad
Ts sume to-Blade W and
giw Two- Distributions -
ase (eq's TIL. 14 et al)
Pir s
i', j
4
NO 41 38 21, 24
Continuity Calculate Blade- Is
7 (pi,_} Pi,j- to-Blade Average Two-Phasée
P17 2 Density Flow In
Test Pir,i' (eq TIL 19) Passage
YES

40

v@

b) BLOCK DIAGRAM FOR SUBROUTINE "ANNUL"

(Numbers above boxes refer to key Fortran statements in the subroutine)

196



FIGURE D. 1 (Concluded) L

@d: Blade lead con-
stants a, b, c¢; Blade and
boundary layer thickness
data and number of blades

et P e — — -
(1st time only) 24

|
|
| Calculate
: passage hydraulic
I diameters Dp_j for all
| .
]
I

Subroutine
BLADE
r 6,5,8,10 or 11

Calculate
angle Qp of pressure
side of channel
(eq. A1)

|

Calculate

blade thickness t

(eq. A.2) including
boundary layer thickness
6*

4

Calculate
angle 8g of suction side
of channel

¢) BLOCK DIAGRAM FOR SUBROUTINE "BLADE"

(Numbers above boxes refer to key Fortran statement numbers in the subroutine)
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ANNN

TABLE D.1
FORTRAN IV LISTING OF APPROXIMATE ANALYSIS PROGRAM
APPROXIMATE 3-DIML INDUCER ANALYSIS FOR NASA AUGUST 20, 1965

TRW ACCESSORIES DIVISIONs CLEVELANDSs OHIO

DIMENSION 2(11922)9R(11922)’AN(1197?)’Tp(]19?2)’TS(1]022)9RHO(109
121)$R8(10’22)!ZB(10!22)9TPA(10)0T5A(10)QTA(ln)’SRFAflﬂ)’SBF(IO)’
2CBF(10),DT2(IC)»FLC(lO)oRVT(lO).DFM(]O),P(IC,ZI),VTB(]Oa21),WB(]G’
321)ODELDB(11922)!AK(10’?I)QU(1192]);ACOSGJ(ZZ)’SJ(22)9W(10)’DFLTAE
4(10)18(10)9VM1(1Y)’VM2(10)’V1(10)QAMl(lo),VR](]C)QVZl(ln)vVR(]D)o
5VZ(10)9ALQSS(10)’DHP(22)9ANN(10)’(ONV(IP)

COMMON AN’RR’ZZ’R’ZQTPPQTSS!PBIQPBZ’WBI’WBZQRHOBIQRHOBZ’RHCFQPSATS
lGO!ANBQPIE’AKZOTDDHPQJQNQI!NQJ’V’FC’FR,FSA95%F29CBF20THPOTQS9TDq9
ZRBZ9RVT1,ISTART’AW,VBTZ’OMFGA’AC2¢VBM?9CNV

1000 FORMAT(8CH
1 )

1001 FORMAT(1615)

1002 FORMAT(8F1Ce4) :

10C3 FORMAT (/72X +38HSTREAMLINE AND SLADE DATA AT STATICN J/4Xs1HT»

1 QXQIHJ97X,1HR914X91FZ914X91HV91QX’2HT5913X92HTP/(21591P5€)5-7))

1004 FORMAT (//2X»38HSTREAML IMNE AND BLANE DATA AT STATION J/4Xs1HIs
1 4X91HJ97X91HR’14X’1HZ914X9]HN914X92HT5;13X92HTP913X91HU’1CX9
I2HNC/(215+1PKF15e7+118))

1005 FORMAT (/72X s31HAVERAGE FLUID DATA AT STATION J/7&4Xs1HI 44X 1HJ>
1 6X s 3HRAV»IX s 3HZAV X s 1HP s TIX s 1HW 11X s2HYM 10X
2 ZHVR’IOXQ?HVT’10X92HVZ910X91HD/(?Iﬁylpgg]?oh))

1008 FORMAT (//2X+52HBLADE-TO-3LADE FLUID DATA BETWFEN STATIONS J AND J-
11/&X91HIyQK91HJ95Xa3HRAV’9X93H7AV98Y’AHD%DT,gxaal9]lY,?PPp91ﬁ79
21HW;11X$2HWP010X91HD01lx92HDP/28X92HNC91IXOIHUsZ?X92H95922X92HWQ-
322X 22HDS)

1009 FORMAT (21541P9F1244)
1010 FORMAT(ZbX;lI5s3X9191E12.4912X’1P1F12.4912Xa1P1F1?.4912X;]P]Fl?.h)

1011 FORMATI(Y/2X+26+43LADE ELEMENT DATA AT EXIT/4Xs1HI 88X 17HLOSS COFFF,
15X s 10HE o F ICTIFENCY 93X s 1 2HDEVIAT ANGLF/(11551P3F157))

1012 FORMAT(///2X+24HOVERALL DERFORMANCE DATA//3Xs12ATOT HEAD CHG94X
111HPRESSURE INs3X»12HPRESSURE CUT 93X s 12HJELY HEAD INs2Xs13HVELY HE
?AD OUT»1Xs14HMASS FLOW RATE s9X s GHTORQUFE 94X s 1 THSHAFT POWER/
31PBE1547)

1013 FORMAT(//3X,»12HOVERALL EFFY 3%, 12HANGULAR YFELY »4Xs11HLTIQ DENSITY,
14Xy 1 1HVAPOR PRESS+2X e 13HVAPORZN CONST 94X s LIHUNBAL ALLOW»2X s 1 3HMAX
JUNBAL ERRs3Xs12HNC OF BLADES/1PBE15.7)

1015 FORMAT(1PBF15.7)

1016 FORMAT(/////2X913HKIN VISCOSITYs4X s 11HVAPCQR PRESSe2X
113HVAPORZN CONSTs6Xs41H-THESE INPUTS 188N FOR THF FOLLCWING DATA)

102C FORMAT(//4Xs1HJs3Xs5HCYCLE 94X s 12HETLN ADJ MAG,4X,,11HTOTAL JUNBAL)

1021 FORMAT(115511793Xs1P2F1547)

1022 FORMAT{//2XsT1HNPSH TOO LOW FOR TWO=PHASE SCLUTION WITH THIS FILUIR
1 IF NC LESS THAN MNC)

PIE=341415927

ISTART =1
READ 1C00
PRINT 1300

READ 10071 sNQIsNQJsMNCsNDATA,LND3

PRINT 1001 ,MQT 4NQJsMNCINDATA,NDB

READ 1002+ (710151)51=1,NQD)
PRINT 1015s(Z2(1s1)s1=1sNQT)

READ 1002 (R(T91)sI=1sN3T)
PRINT 1015, (R(I51)sI=1,5NQT)

READ 100291219 1),1=2sNCJ)
PRINT 10155(Z(1s1)51=2sNQJ)

READ 1002s(R{1s1)s1=2sNQJ)
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DN

PRINT 1015s(R(1s1)s1=2,NQJ)

READ 10025 (Z(NQT»T)s1=2sNQJ)
PRINT 1015(Z(NQIsI)s1=2sNQJ)
READ 10025 {RINQT»T)s1=2sNQJ)

PRINT 1015,(RINQIsI)sI=2+sNQJ)

SET UP FIELD OF HUBs SHROUD AND LFADING EDGE COORDINATES

AN{1+11=0e0
I=1
DO 795 J=1,NQJ
RR=R{1sJ)
27=2(1+J)
CALL BLADE
TP{I,J)=TPP
795 TS(Isd)=TES

J=1

1 I=1+1 |
ANCT o1 )=ANITI-T1114+SQRTI((Z{T 42 )=Z2(I-131))%¥24)+((R{T41}-R(I-1,1))%
1%24))
RR=R(Is1)
Z2Z2=2(1+1)
CALL BLADE
TP(Is1)=TPP
TS(I+1)=T55
IFINQI-1)74741

T J=J+1
ANINQT»J)=S0RTHIIRINQIsJI=R{TaJ)IR¥D )+ (ZINOQT oIV =7 (1,11 %%2,))
ACOSGIII)={RINQI s J}=R{1sJY)/ANINQI »J)
SIIIN=(ZANQT s J)=7 {1+ JVI/ANINQT +»J)

5 ITF{J=NQJ) 74646

6 NQII=NQI-1
ANQQ=NQT!
READ 1002 sENsRHCF sOMEGA GO
PRINT 10154EMNsRHOF sOMEGA +GO

READ 1002 (RHO{T s )9 I=],,NQTT)
PRINT 1015, (RHO(Ts1)sI=1sNQTT)
READ 1002+ (P(Ts1)+1=1sNQTT)

PRINT 1015,(P(Is1)sI=14sNQIT)
READ 1002 (YMI(T)sT=1sNQII)
PRINT 1015 (VMI(T}sI=1.NOIT)

READ 10G2 o (DELTAF(T) s I=1,NOIT)
PRINT 1015 (DELTAE(I)sI=1sNQTT)
READ INO2 s (VTB{I41 sI=1sMOTT)

PRINT 1015, (VTBI{Is1)sI=14NQTT}
NO 2 TI=1.NQIT
RB{I»1)=(R(Is1)+R(T+1s1))/2%
BII)=AN(T+1s1)~=AN(TI,1)
DELDB{Ts1)=0a
ZBUIs1)=(Z2{Ts1)4+Z2(1+191))/2.
VRI(TI)=VMI{T)I*(Z (T2} -201+1s 00 )V/R3(T)
VZI({TI)=VMTI (I ¥{RITI+1+2 V=R Is2))V/R{T
WIT)=VUMI(T %2 #PIEX¥RBI] 1 )V¥B (T 1 ¥RHO( 1.1
VI(IY=VTIBIT 1y *VTE(T 1 )+VYMI (1) ¥VMI ()
AMI (1) =RB(T+s1)%VTRB(Is1)
2 WRBII+1)=SQRT (I (OMEGA*RB(TIs1}-VTR(I 1)) ¥X2,)+yM](TI1¥YMY (1))
J=1
IF(NDATA-11454+45544
44 PRINT 10039 (T sJsR(TsJ)eZ(TsJ)YsANTT o) s TSI sJ)eTP{1sJ)yI=1eNNTY
45 PRINT 10055 ( 1 sJsRBITsJYsZBIT oV aP (11 oWB(Is1)sVMI(]I),
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1 VRI(I)oVTB(I31)sVZ1(T)sRHO(T91)sI=1sNQII)
NQJE=NQJ-1 ’
AQJ=NQJE-1
CRN=RHOF *CMEGA*OMEGA*¥R(NQT»1 ) *EN/GO

99 [155=2
READ 1002 sVsPSATST

PRINT 1016 :
PRINT 1015sVsPSAT ST
J=1
DO 43 1=15NQII

43 CONVII)=1.
CNV=1.
UMAX=0,.0
NCDM=0
DNMAX=R(NQI,1)%.005/ANQOQ
ADJQ=0.

ESTIMATE STREAMLINE POSITIONS AT EACH STATION FROM INLET 7O OUTLET

117 DO 42 1=1sNQIT1
IFICONVIT)I Y41 44] 442
41 PRINT 1022
GO TO 99
42 CONTINUE
1=0
N=0
15 J=J+1
DO 8 I=1sNGIIT
ANTTosJ)=(ANIT sJ=1)/ANINDT 9 J=-1) ) *AN(NQT »J)
AJJ=Jd-1
DELDB( I« JI=NFLTAE(II®({AJI/AQI)I**5,)
9 IF(N)Y1I3»13,y18
13 N=1
GO TO 15
14 N=0C
16 1=1
17 T=1+1
160 RUTsJ)=R{1sS)+AN(TsJ)*ACOSGI ()
Z(Ted)=Z{1eJV+ANIT s IRSI(J)
12 RR=R{I1+J)
22=2(1J)
IF(N~-2118+18+16
19 I=1-1
GO TO 105
18 CALL BLADE
TP(1+J)=TPP
TS(I,J)=T5%
IF(I-NQI)27+20+2C
27 IFIN=-1)17+28+17
28 I=1+1
GO TO 12
20 IFIN=-1)21+118,22
21 N=2
J=J-1
GO TO 16
22 JJ=J+1
NO 26 1=1sMQT1
NO 23 K=JsJJ
RB(IsK)=(R(IsKI+R(I+1sK)) /24
273 7ZBUTsK)I={Z (T oK1 +2Z(T+1sK )} /20
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DDOM=SQRT((RB(I+J)=RB(TsJ=1))%¥2,+(2B(1+J)1=-7ZB(1sJ=1))%¥%2,)
DEMIT)=SQRT((RB(TI s J+1)=RBIT s J=1) ) %¥%2+ (7R (15J+1)=2B(1,J=11)%%2,)
DT20I) = (TSI} +TS(I+T1sd)=TP(I,,J)-TP(I+1sJ))/2
TBI=(TS(IoJ-1)14TP(Tad=-1)1+TS(I+1sJ=1)14TP(I+1sJ-1))/4,
TB2=(TS{Is)+TPII s J)+TSITI+14JI1+TP(I+1,4J)) /4
TB3=(TS{TsJ+1)+TP(1sJ+1)+TS(I+14J+1}+TP(1+1,J+1)) /4,
DT2(I)=DT2(T)*SIN(ASIN(ABS((ZB(1sJ+1)=7RB(1sJ=1)Y1/NDEM(T1)))+ACOSI
1ABS(ACOSGJ(J) )Y}
RVTUI}=RB({TsJ-1)%VTB(]sJ-1)
BB2=ATAN(DEM(I)/((TB1-TR3)%¥RB(TsJ)))
BF2=BB2-DELDR(1s+J)
SBF{I)=SIN{BF2)
CBF (1)=COS(RF2)
BBB=ATAN(DDM/ ((TB1-TB2)¥((RB(I+J)+RB(1sJ=1))/2e)))
BRF=BBB-(DELDR(T+J)+DELDB{TsJ=-1})/2
SBFA(T)=SINIRRF)/NDM
TPALT) =(TP(TIsJ=1)14TP(I+1+sJ-1)+TP(TsJ)+TP(I+14J)) /4,
TSACI)=(TSH T e J=1)+TSUI+1sJ=1)+TS(T s J)+TS(I+19J)) /4,
TALI)={TPA(I}Y+TSA(ILI)1/2.
[F(V)24+24,425
CALCULATE FRICTION LOSS EFFICIENT
24 FLCII) =0,
GO TO 26
25 FLCUIT=(a0071644+e6104/1{WB{1sJ=1)¥DHP{J)/V)%¥%,235))/
1 (2*DHP(J)*SBFA(T1))
26 CONTINUE
I=0
104 1=1+1
106 RBUTsJ)=(R{1sJ)+R(I+15J)) /2,
FR=(OMEGA*CMFGA/2 4 ) ¥(RPR (T4 J)*RBIT+sJ)=RB(I,J-1)¥RB(IsJ=1))
AC2=RBIUTsJI*DT2 (I *SGRTI(R(TI+1sJ)=R(I4J))#%*
1 2+ (Z{T+19J)-2(T1,J))%%2,)
FC=FLCI(T)
FSA=SBFA(I)
SBF2=SBF (1)
CBF2=CBF (1)
TBP=TPAI(T])
TRS=TSA(T])
TPB=TA(I)
RVTI=RVT(I])
RB2=RB(I+J)
RHOB1=RHO( I ,J=-1)
PR1=P(T1+J-1)
WRB1=WB(I,J=-1)
AW=W(T1)
CALL ANNUL
RHO(TsJ)=RHOR2
P(IsJ)=PB2
WBI(TsJ)=wB2
VTIB(T1sJ)=VRT?
VM2 (1) =VBM2
AK(TsJ)=AK2
CONVI(T)=CNV
[F(N-3)10C,101,102
100 TF(I=NQTI+2})104,41744103
101 N=4
I=1+1
GO TO 105
102 N=13
GO TO 107

201



103

178

aNaReEaKa

113
111
34
804
40

50
29

176
750
808

610
611

NC=0
DELLN=DNMAX
N=13
Ji1sJ1=0.0

UINQI»J)=0.0
IF(NQI-2)118,118,202
I=1

NADJ=0

CHECK ACCURACY OF STREAMLINE BALANCE FROM HUB TO SHROUD
IF SATISFACTORYs PROCEED TO STATION OUTPUT CALCULATIONS
IF UNSATISFACTORYs PERFORM STREAMLINE ADJUSTMENTS

I=1+1
IF(U(T+J)=-CRNI111,5111+734
IF(I=-NQII)Y113+29929
IF(MNC~-NC)I3044+8044112
PO 50 T=2sNQI1T

IF{UCT s J)=UMAX)50,50540
UMAX=U(T+J)
EN=EN*UMAX/CRN

CONTINUE

N=1

[=2

GO TO 12

PERFORM STREAMLINE ADJUSTMEINT SEQUENCE

NC=NC+1

=1

[=1+1

VMH1=VM2(]1-1)
VMH2=VM2 (1)
CNVH1=CONVI{I-1)
CNVH2=CONV ()
AKH1=AK(T-1+J)
RHOBH1=RHO(I-14+J)
PBH1=P{I-1+J)
WRHI=WB(I-1+J)
VTBH1=VTB(I-1sJ)
UHI=U(TI=1sJ)
UH2=U(T1+J)
UH3=U({T1+1sJ)

AKHZ2=AK (1sJ)
RHOBH2=RHO (1+J)
PBH2=P(1,J)
WRH2=WBI(1,»J)
VIBHZ=VTBI(1,J)
ANH=ANI{T,J)
RHLD=R(TyJ)
ZHLD=Z2(1+J)
USTAR=U(I—],J)*U(I-lsJ)+U(I,J)*U(IoJ)+U(I+19J)*U(I+1oJ)
AN(T,J)=ANH+DELLN

GO TO 160

USTARD= UGT=1sJ)1%UlT=1s)+UlTI s N ULT2J)+UT+]15J)%U0T+]9J)
IF(DELLNI61358089510
STOP BOS8
[F(ADJQ)I612+612+611
ADJQ=0.
IF(USTARD-UUSTAR) 17096155615
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612

613

6135

614

169

615
616
617

30

31

618
619

620

170
180
152
32
174
173
33

175

177

35

179

USTARP=USTARD

DELLN=-DELLN

GO TO 176

USTARM=USTARD
DELLN=ABS(DELLN)
UND2={USTARP+USTARM=-2 . ¥USTAR) /(DELLN¥NFLLN)
IF(UND2) 6159615y 614
USND={USTARP-USTARM) /{2« *DELLN)
AN(IsJ) = ANH-USND/UND2
ADJQ=1.

GO TO 160

IFI{USTARP-USTAR) A18+616+616
IF(USTARM=USTAR) 620s6174+617
AN(1sJ)=ANH

IF(NCDM) 30,430,221
DELLN=DELLN/10,

NCDM=1

GO TO 176

DELLN=DELLN*10,

GO TO 179

IF(USTARM=-USTARP) 620+619,4619
AN(1ysJ)= ANH+DELLN

GO TO 169

AN(TIsJ)Y=ANH-DELLN

GO TO 169

NANJ=1

NCDM=0

IF(I-NQII)172+173,173
IF(NADJ)1T745174+178
IF(DELLN-DNMAX/10GCCe)117851784135
IF(NDB~-1)32,23,175 '
PRINT 1020

NDR=2

TOTAL=0.0

DO 177 K8=2,NCII
TOTAL=TOTAL+U(KBsJ)

PRINT 1021 4sJsNCsDELLNSsTOTAL
GO To 32

DELLN=DELLN/1C.

GO TO 178

AK({I-1sJ)=AKH1

VM2 (1-1)=VMHI

VM2 (1) =VMH?

CONV(IT-1)=CNVHF]
CONVI(I)=CNVH2
RHO(1-1+J)=RHOEHT1
P{I-1,J)=PBHI]

WBII-1sJ)=WRH1
VIB(I-19J)=VTRH]
Ull-1eJ)=UH]

UlTleJ)=UH2

Ul{I+1sJ)=UH3

AK({TsJ)=AKH?2

RHO(TsJ)=RHORH?2

P{1sJ)=PRH2

WRBI(TIsJ)=WRBH?

VTIBI(TsJ)=VTRH?

AN(TsJ)=ANH

RUTsJ)=RHLD

Z(1sJ)Y=ZHLD
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GO TO 180
202 DO 181 1=2,NQII1

CHECK STREAMLINE UNBALANCE

181 U‘I,J)=ABS(((p(IoJ)—p(I‘loJ))/(05*(AN(I+1’J)—AN(['I’J))))-(ACOSGJ(
lJ)*(RHO(I-le)+RHO(I9J))*(VTB(I'loJ)*VTB(I'loJ)+VTB(I;J)*VTR(IoJ))
2/7(4e%GO%R(14J))))

GO 7O 178

107 U(InJ)=ABS(((p(lyJ)‘P(I‘l’J))/(oS*(AN(I+19J)‘AN(I‘1’J))),“(ACOSGJ(
1J)*(RHO(I“19J)+RHO(IvJ))*(VTB(I‘I’J)*VTB(I‘I’J)+VTB(19J1*VTR(I’J"
2/{ 6L o*GO*¥R(TsJ) ) 1))

I1F(1-2)1150,150,187%3

150 IF(NQI-=-3)750,750,182

182 Ul2sJ)=ABS((P(35sJ)=P(25J))/(«5*%(AN(4yJ)-AN(2,J)) )~ A
1COSGIIJIY ¥ IRHO(2 9 J)+RHO(35J) ) #(VTR(2sJ)¥VTB(2,J)+ \Y
2TB(3sJ)%¥VTIB(35J))/(44%GO*R(35J1)))

GO TO 750

183 IF(I-NQIT)185,186+186

185 U(I+1sJ)=ABSI(P(I+1sJ)=P(TsJ)) /(5% {
TAN{I+29J)=AN(T,J)))I-ACCSGJI(J)* {
PRHO( I J)I+RHO(IT+1sJ) ) ¥(VTBII,J)*VTBITsJ)+ Y

ATB(I+1 s JI*VTIBIT+19J) )/ (4o ¥GO¥R(I+15J)))

186 U(I-I,J)=ABS(((p(I—le)—P(I-ZoJ))/(-ﬁ*(AN(I,J)—AN(I-2,J))))—ACOSGJ
1(J)*(RHO(I-2»J)+RHO(I*1,J))*(VTB(I—2,J)*VTB(I—Z;J)+VTB(I-1yJ)* v
PTRII=-1J)) /(4o *GO*¥R(I~14J)))

GO TO 750

END OF STREAMLINE BALANCING PROCEDURE
CALCULATE STATION OUTPUT AND FINAL BLADE TO BLADE DATA

118 IF(NDATA-1)119,903,120
119 IF(J=-NQJF)117+9C1,901
127 PRINT 1004s(TsJsR{TsJ)sZ (I sJ)sANIT sJ)sTS{IsJ)sTPLTsJ)sUlTsJ)sNCs
11=15NQI1)
9C2 1=0
929 I=1+1
AK2=AK({IJ)
RHOB2=RHC(1sJ)
PB2=P(1sJ)
WB2=WB(1,J)
RHOB1=RHO{I1sJ-1)
PB31=P({1sJ-1)
WB1=WB(1,J-1)
TBP=TPA(I])
TES=TSA(])
TDB=TAI(I])
PDB=e5*(PB1+PB2)
RHOB12=e5% (RHOB1+RHOB2) !
WDB=+5% (WB1+WR2)
ZBI14J1=(Z(1sJ)+Z(1+19J))/2
RAV=(RB(IsJ)+RB(1sJ=111/2
ZJAV=(ZB(I s J)+ZB{1sJ-1))/2
IF(T) 7965794793
704 WS=WDBHAK2*(TBS-TDB)
WP=WDB-AK2*(TDB-T3P)
RHOTDB=RHOF
GO TO 792
793  AK3I=AK2*WDR-AK2*AK2*TDB
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IF(AK2)7005700,775
700 WS=wDB
WP=wDB
PS=PDB
PP=PDB
IF(AK217285725,725
728 RHOS=RHCB12
RHOP=RHOB1?
RHOTDB =RHOB 12
GO TO 788
7125 IF(PDB=PSAT)726,7275727
726 RHOS=RHOF/(1.+T*{PSAT-PD3})
RHOP=RHOS
RHOTDB=RHOS
GO TO 788
727 RHOS=RHOF
RHOP=RHOF
RHOTDB =RHOF
GO TO 788
775 TBWO=TDB-WDB/AK2
WS=WDB+AK2* (TBS~TDB)
IF(TBP=TBWO) 730,731,731
730 WP=040
TBPP=TBWO
GO TO 115
731 TBPP=TBP
WP=WDB=AK 2% (TDR-TBPP)
115 IF(PD3-PSAT)744+745+746
T4t RHOTDB=RHOF/({14+T*(PSAT-PDB) )

WSATZ2=WDB*WDBE=- (GCX*RHOF /T)*( (14 /(RHOTDB*RHOTDB) ) ~(1e/ (RHOF*RHOF ) ))
[F(WSATZ2-WP*¥WP) 760,760,761
760 J8=1
A7=TBS
A13=RHOTDB

765 AB=SQRT(1e¢/((2*¥T/(GO*RHOF ) ) ¥ (AK3I*(AT-TDB ) +AK2¥AK2* (S% (AT*AT—TDR%T
IPBYIY+14/(A13%AY3)))
AS5=PSAT+{1e/T}%(1.~-RHOF/AB)
[F(JB8-2)7664+767s717%

166 JB8=2
A7=TBP
RHOS=A8
PS=AS5
GO TO 765

767 RHOP=AS8
PP=A5
GO TO 788

761 WTBSAT=SORT(WSAT2)

GO TO 779

745 RHOTDB=RHOF
RHOP=RHOF
J8=13
A7=TBS
A13=RHOF
GO TO 765

713 RHOS=AS8
PP=PDB+(RHOF/{2+%G0O) ) * (WDB*WDR-WP*WP)
PS=PSAT+{1e/T)i%(1«-RHOM/RHOS)

GO TO 788

746 RHOTDB=RHOF

WTBSAT=SQRT ((2.*GO/RHOF ) *(PDB-PSAT)+WDR*WNB)
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[F(WTRSAT=-WS) 77997929792
779 TBSAT=TDRB+(WTBSAT-WDRB)/AK2

RHOP=RHOF
RHOS=SQRT(10/((2-*T/(GO*RHOF))*(AKB*(TBS—TBSAT)+AK2*AK2*-5*(TBS* T
lBS—TBSAT*TBSAT))+(1./(RHOF*RHOF))))
PG=PSAT+(14/T) ¥ (1e-RHOF/RHOS)
PP=P5AT+(RHOF/(2.*GO))*(WTBSAT*WTBSAT—WP*WP)
GO TO 788
792 RHOP=RHOF
RHOS=RHOF
PP=PDB+(RHOF/(2.*GO))*(WDB*WDB-WP*WP)
PS=PDB+(RHOF/(2.*GO))*(WDB*WDB—WS*WS)
788 IF(155-2)925+9255926
925 PRINT 1008
[55=3
926 PRINT 1009oIsJ,RAV,ZAVsAKZyPDB,PPsWDBoWPsRH0812pRHOP
PRINT 1010,NCsU(1+J)sPSsWSsRHOS
IF{I-NGI1)929»928,928
928 1F(NDATA-1)900,5900.901
901 IT (J-NQJE)117+901,901
901 DO 902 1=1-NQTI
DELZ=2B{1sJ+1)1-2B{1»J-1)
VR(I)=VM2(I)*(RH(I,J+1)—RB(19J~1))/DEM(Y)
902 VZ(1)=vMZ2(1)#DELZ/DEMIT)
PRINT 10059(I9J’RB(IQJ)’ZB(19J)’p(l’J)’WB(I’J)’VMZ(I)’VR(I)9VTR(19
1J)sVZ 1) sRHO{TsJ) s I=1sNGTT)
IF(J=-NQJEID36+935,935
336 155=2
GC TO 117

END OF RtPETIfiVE CALCULATIONS AT EACH STATION FROM INLET TO EXIT
ORTAIN MASS-AVFRAGED OUTLET FLUID DATA AND PERFORMANCE

9125 WT=0.0
DO 938 1=1,MJ1!1

938 WT=WwT+W(TI)
PR2=0e0
DO 939 I1=1,NQII

939 PB2=PB2+P(1,MQUE)*¥*W(I)
PR2=PB2/WT
PR1=00
DO 940 1=1sNQII

940 PB1=PB1+P(1,1)*¥w(I)
PR1=PB1/WT
VH1=OQO
DO 941 I1=1sNQII

941 VHISVHL+VI(I)*W(I)
VHI=VHL /(2 ¥WT*GO)
VH2=0e.0
DO 942 I=1.NQII

342 VH2=VH2+(VTB(I;NQJE)*VTB(IsNCJE)+VM2(I)*VMZ(l))*W(I)
VH2=VH2/ (2 %W T¥*G0)
DAM=040 ‘
00 943 1=1sNGII1

9473 DAM=DAM+W(I)*(RB(IsJ)*VTB(IoNOJE)-AMl(I))/GO

DELH=OOO
PS=0MEGA*DAM
ANN=0.0
DO 944 1=1,NQII1
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944

PH1=P{1+1)/RHOF
PH2=P{1sNQJE} /RHOF

CH1=V1(1)/(2.%GO) :
CHZ—(VTB(I.NOJE)*VTB(I,NOJE)+VM2(I)*VM2(I))/(2 *GO)
TLHI=CH2-CH1+PH2-PH1

DELA=DELH+W(T)%¥TLHI/WT .
DAMI=RB(TsJ)¥VTBI 1 sNQJIE ) =AML (1) ,
ALOSS( 1) =(OMEGA*DAMI=TLHI*GO)/((WB(Is1)%*WR(1+1))/2)
ANN(T)=TLHI*GO/ (OMEGA*DAMT )

ANNOV=WT*DFLH/PS

PRINT 10119(IsALOSS(I) sANN(T)sDELTAE(T)»I=1,N2TT}
PRINT 1012 +DELHsPB1sPB2sVHI sVH2sWT sDAM,PS

PRINT 1013sANNOV»CMEGA sRHOF sPSATsTsCRN»ENsANB

GO TO 99

END
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akaNaNal

aNaANA!

A NS!

48

£

16

17

10

19

20

21
22

SUBROUTINE ANNUL

SUBROUTINE FOR ANNULUS VELOCITY DIAGRAMS AND OTHER FLUID DATA
FOR GIVEN STREAMLINE POSITIONS _ :

DIMENSION 2(11,22)9R(ll’22)9AN(]1,22)yDHp(ZZ)

COMMON AN’RR,ZZ’R9ZSTPP,TSS’P819P82vWBleBZ;RHOBlQRH0829RHOF9PSAT$
lGO’ANB,PIE’AKZQT7DHP9J’NQIQNQJ!V’FC,FR’FSAosﬁFZ’CBFZ’TBP’TRSQTDBo
2R82’RVT1sISTARToAWsVBTZ9OMEGA9AC29VBM29CNV

L=0

RHOB2=RHOF

AP=0,1

ATT=RHOF

ADP=0.1

VvBM2=AW/ (RHOB2*AC2%ANB)

WwR2=VBM2/S5RBF2

VBT2=OMEGA*RB2-WB2*(CBF 2
WOR=(WB1+WR2) /2.

AK2=FSA*(RB2¥VRT2-RVT1)

RHOB12=(RHOB1+RHOB2)/2.

IFIVI1lsload

AL12=0.0
GO T0 5

BEGIN LOSS CALCULATION

IF(WB1-WB2)6+6s7
AK=(1e=WB2/W31)/{2e%(1e+WB2/WR1))
AL12=FC*WDR*NDB+AK*(NB]*WBI-WBZ*WBZ)
GO TO 5

AL12=FC*WDB*wDB

COMPLETFE LOSS CALCULATION

P82=p81+(RHOBlZ/GO)*(FR—ALIZ-.S*(WB?*WBZ'WBI*WRl))
IF(TY40940 455

PDB=(PB2+PB1} /2.

AK3=AK2*WDB-AK2*AK2*TDB

IF(AK2)8+9,10

[F (RHOF=RHOR?2 6156112

IF(AP=0N0011999915

L=100

1F (PDR-PSAT)I16s17s17

ENTER TWO-PHASE FLOW ITERATION LOCP

RHODB=RHOF/(1.+T*(pSAT—pDB))
GO TO 41

RHODB=RHOF

GO TO 41

TBW=TDB-WDB/AKZ2
WS=WDR+AK2*{TBS-TDNR)
IF{TBP=T3W)19,20,20

wp=0.0

TBPP=TBW

GO TO 21

TBPP=TBP
WP=WDB—AK2*(TDR‘TBPP)
1F(PDB=PSAT}22+23+24
RHOTDBzRHOF/(1.+T*(pSAT‘PDB))
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WSAT2=WDB*WDB—(GO*RHOF/T)*(1./(RHOTDB*RHOTDB)-1./(RHOF*RHOF))
IF(WSAT2-VP*WP)}254+25926
26 WIBSAT=SQRT(WSAT2)
29 TBSAT=TOB+{(WTBSAT-WDB) /AK2
GO TO 27 o
24 WTIBSAT=SQRT((2+.%GO/RHOF)*(PDB-PSAT)+WDR*WNB)
IFI(WTBSAT-WS)29+238+28
28 RHODB=RHOF
GO TO 41 -
23 NN=1
X1=TDB
X2=TBS
A1=(2.*T/(GO*RHOF))*(—AKB*TDB—.S*AKZ*AKZ*TDB*TDB)+1./(RHOF*RHOF)
G0 TO 31 ‘
27 NN=2
X1=TRSAT
Xx2=TRS
Alz(Z.*T/(GO*RHOF))*(—AK?*TBSAT—.S*AKZ*AKZ*TRSAT*TBSAT)+1./(RHOF*R
1HOF)
GO TO 31
25 NN=3
X1=T3PP
X2=TBS
A1=(2.*T/(GO*RHOF))*(—AKB*TDB-.5*AK2*AK2*TDB*TDB)+1./(RHOTDB*RHOTD
1B)
DD=5QRT(1./((2.*T/(GO*RHOF))*(AKB*(TBPP-TDB)+.5*AK2*AK?*(TBPP*TRPP
1-TDB*TDBE )41« /7 (RHOTDB*RHOTDB) )}
31 Bl1=2*¥T#AK3/(GO¥RHOF)
Cl=7e #*THAK2#AK2 / (GN*RHOF %24 )
CAPX1=A1+B1*X1+C1%#X1*X]1
CAPX2=A1+B1#X2+C1¥X2%X?2
CON5T1=(1./SORT(C1))*ALOG(SORT(CAPXI)+x1*SQRT(C1)+81/(2.*SQRT(C1)’
1}
CON5T2=(l./SQRT(C1))*ALOG(SORT(CAPx2)+x2*SORT(Cl)+Bl/(2.*SORT(C1))
1)
G50 TO (32923934 NN
32 AA=RHOF*(TDR-THPP)+CONST2=-CONST1
GO TO 130
33 AA=RHOF¥(TBSAT-TBPP)+CONST2-CONST1
GO TO 130
34 AA=CONST2-COMST]
35 [F(TAP-TBW}36s37+37
36 RHOP=DD
GO TO 38
30 IF(TRP-TBW)139+37+37
39 RHOP=RHOF
GO TO 38
37 RHOP=04,0
38 RHODB=RHOP#*(TBPP-TBP)/(TBS-TBP)+AA/(TBS-TRP)
41 IF(ABS({(RHODB-RHOB12)/RHOB12)1-0.001161+61+42
42 TF(L=-100)43 44444
44 CMNV=0.
G0 10 40
43 [F(RHODB=RHOR12145951 446
46 TF{LYB1961415
45 IF(L)YT01,7014702
701 TT=RHNOBZ2
TTP=ATT
BTT=RHODE
ATT=RHOB12
209



702
711
707

50

62

15

61
40

ADP=AP

GO TO 50
[F(AP=0.001)701+701+711
IF{AP=-ADP)?701+7074+707
I[F ({RHOB12- RHODB ATT+BTT1701+62+62
L=L+1

RHOB2=TT*{]1.-AP)

GO TC 48
TT=2.¥TTP-RHOB1
AP=AP/10,

GO TO 50

CNV=1e.

RETURN

END
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SUBROUTINE BLADE
SUBROUTINE FOR BLADE SURFACE COORDINATES TP AND TS fROM GIVEN R»Z

DIMENSION Z(11922)sR{11422)3AN(11,22)4DHP(22),TF(22)
COMMON ANsSRR9Z2Z+sRsZsTPP+sTSSsPBlsPR2sWB1sWB2sRHOB1SRHOR2 sRHOF sPSAT s
160 +sANBIPIEsAK2 s TsDHP s U aNQT oNQUsVIFCsFRIFSAISBF2+sCBF243T3P,T8S5,TDB,
2RB2sRVTLIsISTART 9AWIVRBT2sOMEGAJAC2 3 VBM2 4CNV

10C6 FORMAT(B8F10e4)

1007 FORMAT(1PBE]1547)
GO TO (196954109891 1)sISTART

1 READ 100¢» AASBBsCCoDSEXsTITHRITIDTRIANBSTF(1)sTF(2),
1TF(3)

PRINT 1007,AABBsCCsDSEXsTITsRITeDTRWANBsTF(1)sTF(2),

1TF(3)

[FINQJ-4)T75,76576
76 DO 23 K=4,9NGQJ
23 TF(K)=1.
75 TPNB=2.%#PIE/ANB
DO 24 K=1-NQJ
TTH=TF(K)*(TIT+DTR*(R1IT-R(14K)))
TTT=TF(K)*(TIT+DTR¥(R1IT-R(NQI,K) 1)
DZDT=AA+BB*Z{NQI sK)+CC*¥Z(NQT+K)*¥Z2(NQT4K)
ADHP=TPNBE*DZDT
ADH=ADHP-TTT
BOH=ADHP-TTH
CDH=AN(NQI,XK)
24 DHPIK)Y=1e/{1s/(2+%CDH)+1e/(ADH+BDH})
DO 27 K=2sNQJ
27 DHP(K)=(DHP(K=1)+DHP(K)) /2
IF(CCY 39443
4 [F(BB)25+26+25
25 [START=2
GO TO 6
25 ISTART=3
GO TO 5
3 D=4 *¥AA*CC-BR*ARR
IF{Q)1T7+28+9
28 ISTART=5
GO TO 8
7 SQ=SQRT(-Q)
RSQ=1e/5N
BMSQ=BB-5Q
BPSQ=BB+S0O
FBSQ=BM5Q/8PsQ
[START =4
GO TO 10
3 SQA=5QRT(Q)
SQ2=2./5Q
TQ=SQZ2*¥ATAN(RR/SQ)
ISTART =6
GO TO 11
6 TPP==ZZ/AA
RSBB=RR#SINIATAN(AA/RR))
GO TC 30
5 TPP=(-1/8B)*ALOG({AA+BB*22)/AA)
RSBB=RR¥SIN(ATAN{ (AA+BB*Z22)/RR))
GO TO 30
10 TPP==-RSQ*ALOG( ({2 *¥CCH*Z2Z+BMSQ)/(2.%CC*22+BPSQ)) /FBSQ)
31 RSAB=RR*SIN(ATAN( (AA+BR*¥224CC*22%22)1/RR}Y)
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11

3C

GO TO 30
TPP={1. /(BB+CC*ZZ))—1 /8B

Go TO 31

TPP=-5Q2* (ATAN((2+%CC*22+BB)/SQ))1+TQ
6o To 31
TT=T1T+DTR*(R1T-RR}
TTE=TT*TF(J)

AJ=d-1

Q0J=NQJ-1

TDS=2+ *DSEX* (AJ/Q0J)
T5S=TPP+TPNB- (TTF+TDS) /RSBE
RETURN

END
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